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Stability and the Fractal Structure of a Spherical Flame in a Self-Similar Regime
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Stability of a discontinuous flame front propagating in a self-similar regime Ar“ is considered.
It is shown that the regime witlx > 1 is more unstable compared to the flame propagating with a
constant front velocity. The destabilizing effect is more pronounced for flames with the ratio of the
fuel density to the density of the products of burnipg/p, > 2 which is typical for usual laboratory
flames. A formula for the velocity of a flame with a fractal structure of the front is discussed.

PACS numbers: 82.40.Py, 47.20.Ky, 47.53.+n

It is well known that a flame front propagating in a pre- a length scale larger thalwR/n. are stable due to the
mixed gaseous fuel is hydrodynamically unstable againstpherical geometry [12,13}( is the critical number of a
Landau-Darrieus instability [L—3]. Recent experiments orspherical function). The fractal structure implies a large
spherical flames [4] showed that the flame instability leadsiumber of cascade¥ = In2#R/A.n.)/In(b) > 1 and
to the self-similar regime of the front propagation. In thethe total flame surface is
self-similar regime the radius of the flame front changes
with time as

27R\?
, S; = Sy = A7R?BY = 47TR2<L> )
R =At*, R=aA *RDe (1)

nCC

whereA is a coefficient which presumably depends uponwhere the fractal excesg = In(8)/In(b). In Eg. (3)
the flame parameters. The approximate value of théhe cutoff wavelengthh, = A.(®) is known from the
exponente measured experimentally for several mixtureslinear stability theory of a planar flame front [7—-11],
isa = 3/2. The self-similar regime is associated with theand » and 8 should be determined from the nonlinear
development of a fractal structure on the flame front withtheory of a curved stationary flame. To obtain the critical

total surface of the front, number n. one must consider stability of a spherical
wAl/e flame taking into account the self-similar regime of flame
S = 4mR? o Rl D/, (2)  propagation, Eq. (1).
ug

In [4] it was assumed that the flame acceleration in
whereu is the flame velocity an@ is the ratio of the fuel the self-similar regime influences the cutoff wavelength
density p; to the density of the products of burning.  too, which was taken in the form, ~ \/yuy/R. This
According to Eq. (2) the fractal dimension of the unstableassumption may be true i > 2, but it is definitely
flame front is2 + (o — 1)/«, so that the fractal excess erroneous for the experimentally observed self-similar
isd = (e« — 1)/a. Qualitatively the same behavior of a regimes witha < 2. Indeed, in this case the acceleration
spherical flame was observed in numerical simulations obf the front R = a(a — 1)tr*~? tends to zero for —
model nonlinear equations for a flame front [5,6], thoughe and cannot be the main reason of the flame front
different values for the fractal dimension were obtained ininstability.
different papers. In the present Letter we consider stability of a discon-
The fractal structure of a flame front may be describedinuous flame front propagating in the self-similar regime,
as cascading cells: cells of smaller scale are imposed diq. (1). We show that the regime with > 1 is more un-
cells of large scale and so on. The total surface of atable compared to the flame propagating with a constant
fractal flame may be estimated in the following simplefront velocity. The destabilizing effect is more pronounced
way [4]. Let every step of the cascade decrease théor flames with the expansion coefficigBt= p;/p, > 2,
cell size by factorb, Ly+1 = Ly/b, and increase the which is typical for usual laboratory flames. The obtained
front surface by factoB, Sy+1 = BSi. The cascading results specify the parametérin Eqg. (1) as a function of
process is limited from below, since the cell size cannothe expansion coefficief® and the exponent of the self-
be less than the cutoff wavelengith, for which thermal similar law.
conduction suppresses the instability [7—11]. The cell Since the flow is incompressible, the hydrodynamic
size is limited from above too since perturbations withequations describing flame propagation and stability can
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be taken in the form As an additional boundary condition we take the Landau
1 9 condition that the velocity of flame propagation is not
23, (r*u) + V.w =0, (4)  changed by the small perturbations, i.e.,
d d 1 ity — dR/at + (ou/dr) R = 0. 19
a_vtv + I/ta_w + (WVJ_)MZ __VJ_P, (5) ! / ( / )1 ( )
r p

It should be mentioned that the condition Eq. (19) applied
du Ju _ _Lap to the self-similar regime Eq. (1) does not mean a constant
ot ar p or velocity of the flame front any more, as it was in the

whereu,w are the radial and the angular velocity com-.orlglnal statemenF by Landau and Darrieus [1~__3]' I_nstead
it means that the instanteneous normal veloBitsemains

ponents, respectively, and, is the angular part of the X e . .
operatorV. For the unpertered spherical flame we haveinchanged by perturbations of an infinitely thin front in the

w = 0 and the flow ahead of the flame front is given by linear regime. . I
Equations (14)—(20) may be solved in a way similar to

u=B(t)/r’, (P — Px)/p; = B/r — B2/2r*. (7) the classical work by Istratov and Librovich [12]. The
’ flow ahead of the flame front is potential= 0&/dr,
The gas behind the flame frontis atrest= 0forr < R. W = V., Ap = 0. Taking into account the spherical

The boundary conditions at the spherical flame front ~ Symmetry of the unperturbed flow, we obtain perturbations
ahead of the flame front in the form

p1(uy — 1.3) = —pZR, (8) - : n+1

Pl + pl(ul _ R)2 — P2 + pZRZ (9) QD - RRq)l(t)Yn,m(R/r) ’ (20)

. i =—(n+ DRO,(1)Y,n(R/r)" 2, 21

give the relationB(r) = R?’R(® — 1)/©. Then the un- ! (n IR (0)Y0.n(R/r) (21)

perturbed flow ahead of the flame front ¥ R) is de- W = —n(n + DRO()Y,m(R/r)"2,  (22)
scribed by

® —1R?. whereY,, ,, are the spherical harmonid3y, ,, = —n(n +

u=—g a2k (10)  1)v,,.. The perturbation of pressure ahead of the flame

front follows from Egs. (15) and (21),
Ppi i ®—-13a¢—1R 1 (® —1)72R*
IR ————— — - =

Q) a r 2 02 4 P/pll'?2 = n,m(R/V)an)l
(11) y [_ t dd, 5
Pressure behind the flame frott < R) follows from ad; dt
Egs. (9)-(11), a — 1 0 —-1R?
. _ _ 2 _ — +m+1) —} (23)
P/lezz(a 3¢ -1 160 -1 12) o 0 3

0 @ 2 02

The linearized hydrodynamic equations for small perturAS it follows from Egs. (14) and (15) the perturbation
bations of the spherical self-similar flame have the form ©Of pressure behind the flame front satisfies the Laplace

3 equation
=) + 1w =0, 13 _
ro gy ) (13) AP =0. (24)
%iw + uai?W _ —Lizi’, (14)  Then solution of Egs. (13)—(15) behind the flame front is
r r ~ . "
p B P/le2 = Yn,m(r/R) CI)Z

a0, 1 0P 4D 1
—+—(uu)=———, (15) ><|:_t e?2 + 1+ a i|
ot 0 J ad, dt ntl a > (29)

where perturbations are denoted by a tilde and the opera-

~ . n—1
tor] = rV, is introduced. The perturbed boundary con- %2 — nORY,u(r/R)"®2 + O, Ps5(r), (26)

ditions at the flame front are W, = n(n + 1)®RYn,m(r/R)”‘1CI)2
i, — R/t + (du/ar) iR = © Y@, — 9R/01), (16) _ ®Yn,m<rddi)3 N 2¢3>. 27)
,
Pr+ 9P/ornR = P2, (17) Taking the perturbations of the flame front in the form
I, + %izie = IW,. (18) R = RY, 0. 8
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and substituting Egs. (21)—(23), (25)—(28) into the boundary conditions, Egs. (16)—(19), we obtain the system of ordinary
equations for the unknown functiods,;, ®,, &5, ®,,

(n + DD, — ndy + dy/R + 2 1<3c1>4 + é‘%“) =0, (29)

_Légl < a —1 n-%l) <a-—1 _ > _Ld@g @-—1<a-—1 ) _
o dr + {1+ ” + ) o, + ” "+1q)2+adt + o ” +2/0 |d, =0,
(30)

@1 dP -1 OP 0 -1
n(n-i-l)d)l+n(n+1)®(1)2—5d—t3—<aa +2> R3+n(n+l) ) o, =0, (32)
(n+1)<1>1+iddi;4+[1+2(®—1)/®]<p4=o. (32)
(64

We look for the solution of Egs. (29)—(32) in the fodn, ®,, ®; ~ t7, @3 ~ 1“2~ whereo is the instability growth
rate. Then the dispersion relation for the instability growth rate is

(%)2@ £n+On) + B+ 1)+ d(+ 0+ On) + 20020 + n)]

®®_1n2(n+®d)—(3®+2®d+3)n—2n2+%—2—d=0, (33)

whered = (@« — 1)/a. For the casex = 1, Eq. (34) with larger expansion coefficie® > 2. For example,

coincides with the result obtained in [12]. for ® = 20 the stability boundary moves from= 10 for
The critical spherical number,, for which o = 0, is  the flame with constant velocityr = 1) to n = 7 for the
determined by self-similar regime withw = 3/2.
s s The instability growth rate is shown in Fig. 2 versus
ng(n. + 0d) (0@ — 1) = 20n; + n. the number of the spherical harmomidor the flame with

— (30 +204d +3)On. — 20 — Od = 0. (34) the expansion coefficield = 10. The instability growth

rate for the self-similar regime of the flame propagation

The critical numbewr. as a function of the expansion co- (a« = 3/2) differs noticeably from the increment for the

efficient ® is shown in Fig. 1 for a flame front with con- flame with a constant velocity even for the case when the

stant velocitfa = 1) and for the experimentally observed stability limits change slightly. For high order harmonics

self-accelerating flamesr = 3/2). The stability limits » — = the instability growth rate is proportional to the

are almost the same for flames with a small expansion coeéxponent of the self-similar regime,

ficient® < 2:n, = 2/(® — 1). The self-similar regime

a = 3/2 becomes essentially more unstable for flames o= ans/0, (35)

FIG. 2. The instability growth rate- vs the spherical number
FIG. 1. Stability boundaries for a spherical flame (1) with n for the flame (1) with a constant velocity; (2) propagating
a constant velocity; (2) propagating in the self-similar regimein the self-similar regime witha = 3/2. The expansion
with & = 3/2. coefficient is® = 10.

2816



VOLUME 76, NUMBER 15 PHYSICAL REVIEW LETTERS 8 ARRIL 1996

where S. Blinnikov and P. Sasorov (Ref. [6]) available prior to
publication. This work was supported by NUTEK, Grant
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