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Interaction of Ultrasound with Vortices in Type-II Superconductors
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The theory of ultrasound in the mixed state of type-II superconductors is suggested which tak
account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the
state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave prop
along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now
in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect
be looked for only in clean superconductors with a strong Magnus force.

PACS numbers: 74.60.Ge
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Investigation of ultrasound propagation in the mixe
state of a type-II superconductor has proved to be an eff
tive method of studying low-Tc and high-Tc superconduc-
tors [1,2]. Recently Dominguezet al. [3] have attracted
attention to an interesting manifestation of interaction b
tween the ultrasound and vortices: theacoustic Faraday
effect. The effect results from a force on ions transver
to the ion velocity: the velocity of the transverse soun
propagation depends on the sign of circular polarizati
and the plane of linear polarization should rotate when t
sound wave propagates along vortices.

However, the equations of Dominguezet al. [3] (see
also [4]) are not Galilean invariant and do not satis
the momentum-conservation law for the whole syste
“ions 1 electrons” since they failed to include in th
ion equation of motion the so-called anti-Magnus forc
which is especially important for dirty superconductor
In the present work I use dynamic equations which a
free from these deficiencies. The correct theory predi
other functional dependences on the physical parame
and different conditions for observation of the Farad
effect. In particular, our analysis does not confirm th
conclusion of Dominguezet al. on the strong Faraday
effect without the Magnus force in dirty superconducto
at high temperatures and predicts a many orders
magnitude weaker effect at low temperatures. Finally, f
the ultrasound wavelengths used in the experiments
best conditions for observation of the acoustic Farad
effect are at high temperatures in clean superconduct
The present work includes the theory of Refs. [1,2]
a particular case, but generalizes the theory on a lar
domain of physical parameters: the nonzero Magnus fo
(clean superconductors), low magnetic fields, where
diamagnetism of the mixed state is essential, waveleng
short compared to the London penetration depth.

We adopt the following picture of electron and io
motion induced by the ultrasound. The electron liqu
consists of two parts: normal and superfluid. The norm
component is effectively clamped to the crystal ions b
viscous forces responsible for the normal resistance: th
move together with the ion velocity$yi ­ d $uiydt ( $ui is
0031-9007y96y76(15)y2794(4)$10.00
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the ion displacement). In contrast, the superfluid electr
move with the superfluid velocity$ys which is different
from the ion velocity in general. Such a picture hol
until the magnetic field is weak compared to the upp
critical magnetic fieldHc2 and the flux-flow resistance is
much less than the normal resistance. Then the nor
current proportional to the velocity of the normal electro
with respect to ions may be neglected.

Thus our three-component system (ions, normal el
trons, and superfluid electrons) becomes effectively t
component as in the two-fluid model for superfluids: the
is a superfluid with the velocity$ys and the mass density
mens and a heavy normal fluid with velocity$yi and mass
densitymin 1 mesn 2 nsd ø min. The charge densities
of these two components areens and 2ens. Here e is
the electron charge,me and mi are the electron and ion
masses, andns and n are the superfluid electron and to
tal charge number densities, respectively. We can w
the equations of motion for the superfluid and the norm
fluid immediately using a close analogy with the two-flu
hydrodynamics for rotating superfluids [5]:

≠ $ys

≠t
­

e
me

∑
$E 1

1
c

s $yL 3 $B d
∏

. (1)

≠2 $ui

≠t2
2 c2

t
$=2 $ui ­ 2

e
mi

ns

n

Ω
$E 1

1
c

f $yi 3 $B g

1
1
c

fs $yL 2 $ysld 3 $B g
æ

,

(2)

Here ct is the “bare” sound velocity ignoring interactio
with superfluid electrons,$B is the magnetic induction,F0
is the magnetic flux quantum,$yL ­ d $uLydt is the vortex
velocity, $uL is the vortex displacement, and$ysl is the
local superfluid velocity at the points of the vortex lin
which differs from theaveragesuperfluid velocity$ys due
to deformations of the vortex lattice. If the transver
sound wave propagates along vortices (the axisẑ), then

$ysl ­ $ys 1
c

ensB
Cp

44

µ
ẑ 3

≠2 $uL

≠z2

∂
. (3)
© 1996 The American Physical Society
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The renormalized tilt modulusCp
44 relates only to the

vortex line tension, without including the elastic energy
the average magnetic field [6]. For an isotropic superc
ductor not very close toHc1 Cp

44 ­ sF0By4pl2d lnsayrcd
(for an anisotropic case, see, e.g., [7] and referen
therein). Herea ,

p
F0yB andrc are the intervortex dis

tance and the vortex core radius, respectively.
The electrical field$E and the magnetic field$h generated

by the ultrasound satisfy the Maxwell equations:

$= 3 $E ­ 2
1
c

≠ $h
≠t

,
4p

c
$j ­ $= 3 $h , (4)

where $j ­ enss $ys 2 $yid is the average electric cu
rent. The supercurrent$js ­ ens $ys satisfies the London
equation:

4pl2

c
$= 3 $js ­ $by 2 $h . (5)

Herel ­
p

mec2y4pe2ns is the London penetration dep
and $by is the ac component of the vortex field [8] (th
vortex induction in [9]) which coincides with$h only
in a uniform vortex lattice. For the transverse sou
propagating along vortices$by ­ B≠ $uLy≠z.

We need also the equation of vortex motion wh
connects three velocities$yi, $ysl , and $yL:

2hs $yL 2 $yid 1 h0fẑ 3 s $yL 2 $yidg

­ p h̄nsfẑ 3 s $ysl 2 $yidg .
(6)

Equation (6) generalizes the equation of the vortex mo
known for a crystal at rest: the velocities$yL and $ysl are
te
th
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et

d
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replaced by the relative velocities$yL 2 $yi and $ysl 2 $yi

in accordance with Galilean invariance. The Lorentz fo
on the right-hand side is balanced by the viscous force~ h

and the Magnus force~ h0. The parameterh0 was known
to vary fromp h̄ns for superclean superconductors [10]
0 for dirty superconductors [11]. However,h0 may even
exceedp h̄ns, being equalp h̄n, when the Iordanskii force
is essential (see Sec. X of Ref. [5]).

Equations (1)–(6) are a closed system of equati
averaged over the vortex-array cell. Equation (1)
electrons does not differ from the case of the ion latt
at rest. As for Eq. (2) for ions, I shall show now that th
force from vortices in this equation (the last term on t
right-hand side) is required by the momentum conserva
and the third Newton law.

If there is no external forces on the electron superflu
the Helmholtz theorem tells that$yL ­ $ysl [5]. This means
thath ­ 0 andh0 ­ p h̄ns. Bearing this in mind, one can
present $yL as $yL ­ $ysl 1 s $yL 2 $ysld on the right-hand
side of Eq. (1). Then the contribution~ fs $yL 2 $ysld 3
$Bg is an external force due to interaction with the no
mal fluid. Correspondingly, the same force must app
in the ion (normal fluid) equation (2), but with the opp
site sign. In superfluid hydrodynamics this force is call
mutual friction force[5]. But for superconductors it is bet
ter to call itcoupling force,since the force may incorporat
not only friction, but also elastic pinning (see below). T
coupling force, being external for the superfluid comp
nent, is internal for the system ions1 electrons as a whole
Therefore this force does not contribute to the time va
tion of the total momentum
≠

≠t
fmin $yi 1 mesn 2 nsd $yi 1 mens $ysg ø min

≠ $yi

≠t
1 mens

≠ $ys

≠t

­ minc2
t

$=2 $ui 1
1
c

f $jl 3 $B g ­
≠

≠z

µ
minc2

t
≠ $ui

≠z
1

B $h
4p

1 Cp
44

≠ $uL

≠z

∂
. (7)
n

nus
ent
i-
n-

ce
ce

.e.,
Here$jl ­ enss $ysl 2 $yid is thelocal current on the vortex
line, in contrast to theaveragecurrent $j ­ enss $ys 2 $yid
in the Maxwell equations (4). Equation (7) demonstra
the momentum conservation law for the case when
wave propagates along vortices (the axisz): the time
variation of the momentum is determined by the div
gence of the momentum flux which consists of (i) the str
tensor of the ion lattice, (ii) the stress tensor of the magn
field linearized with respect to the ac field$h, and (iii) the
vortex-lattice stress tensor given by the tilt modulusCp

44.
In the long-wavelength limitlk ! 0 (see below) the term
~ ≠ $ysy≠t in the momentum variation may be neglecte
and Eq. (7) has a simpler form,

mins≠2 $uiy≠t 2 c2
t

$=2 $uid ­
1
c

f $jl 3 $Bg , (8)

used by Shapira and Neuringer [1]. But they neglecte
difference between the local and average electric cur
responsible for the diamagnetism of the mixed state.
s
e

-
s
ic

,

a
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Replacing the coupling force in the equation of io
motion Eq. (2) with the help of Eq. (6) one obtains

≠2 $ui

≠t2 2 c2
t

$=2 $ui ­ 2
e

mi

ns

n

3

Ω
$E 1

1
c

f $yi 3 $B g 2
B
c

h̃s $yL 2 $yid

2
aM 2 1

c
fs $yL 2 $yid 3 Bg

æ
,

(9)

where h̃ ­ hyp h̄ns and aM ­ h0yp h̄ns are the di-
mensionless amplitudes of the viscous and the Mag
force, respectively. The coupling force has a compon
~ saM 2 1d transverse to the ion velocity which is max
mal in a dirty superconductor when the Magnus force va
ishes (aM ­ 0). Indeed, suppression of the Magnus for
in the dirty superconductor means that impurities produ
a force which cancels the Magnus force on vortices, i
2795
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on superfluid electrons. Then in accordance with the th
Newton law one must expect that the force of oppos
sign acts from vortices on impurities, i.e., on crystal ion
This explains the force~ saM 2 1d which may be called
the anti-Magnus force.

Later on we assume that the transverse ultrasound p
wave ~ expsikz 2 ivtd propagates along the vortice
From Eqs. (3)–(5) one can derive relations connecting
electric field and the local superfluid velocity with the io
and the vortex velocities and displacements:

$E ­ 2
me

e
v2 $ui 2

1
1 1 l2k2

1
c

f $yL 3 $Bg , (10)

$ysl ­
$yi

1 1 l2k2
2

c
ensB

C44skdk2fẑ 3 $uLg . (11)

where now

C44skd ­
B2

4p

1
1 1 l2k2

1 Cp
44 (12)

is thek-dependent tilt modulus related to the total ener
of deformation [12]. The contribution~ v2 to the electric
field $E will be neglected later on, since it is not connect
with vortices. It yields a small correction to the soun
velocity of the relative ordermensymin which is present
even in the Meissner state.

Finally, with the help of Eqs. (6), (10), and (11), on
can rewrite the equation of the ion motion, Eq. (2),
terms of the ion velocity and displacement only:

2sv2 2 c2
t k2dmin $ui ­

ensB
c

f fk $yi 1 f'sẑ 3 $yidg .

(13)

The longitudinal and the transverse forces on ions fr
vortices are given by the dimensionless force paramet

fk ­
Dk2

iv
2

1

sh̃ 2 Dk2yivd2 1 a
2
M

3

Ωµ
h̃ 2

Dk2

iv

∂
3

∑µ
l2k2

1 1 l2k2

∂2

2

µ
Dk2

iv

∂2∏
1 2aM

l2k2

1 1 l2k2

æ
, (14)

f' ­
2l2k2

1 1 l2k2 1
1

sh̃ 2 Dk2yivd2 1 a
2
M

3

Ω
2

µ
h̃ 2

Dk2

iv

∂
l2k2

1 1 l2k2

Dk2

iv

1 aM

∑µ
Dk2

iv

∂2

2

µ
l2k2

1 1 l2k2

∂2∏æ
. (15)

HereD ­ cC44yensB.
The previous experimental and theoretical investi

tions [1–3] dealt with the long-wavelength caselk ! 0.
One may call it the electrodynamic limit since in this ca
all forces from vortices on ions can be expressed in te
of the electrodynamic parameters: the Ohmic and
Hall conductivities,sO ­ hc2yF0B, sH ­ h0c2yF0B,
2796
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related to the viscous and the Magnus force, respectiv
and the magnetic permeability

m ­
B2y4p

B2y4p 1 Cp
44

­
B2

4pC44s0d
, (16)

which describes the diamagnetism due to circular c
rents over the vortex-lattice cell [6]. HereC44s0d is
the tilt modulus in the limitk ! 0 (the Labusch modu-
lus). Equation (16) yields the differential magnetic pe
meability m ­ ByH for the case when the variation o
the magnetic field is normal to the vortices. HereH ­
s1y4pd≠FsBdy≠B is the thermodynamic magnetic fiel
along the equilibrium magnetization curve. Equation (
of vortex motion is simply Ohm’s law

$jl ­ sO
$Ei 2 sHsẑ 3 $Eid , (17)

which connects the local current$jl ­ $jym and the electric
field $Ei ­ $E 1 s1ycd f $yi 3 $B g in the coordinate frame
moving with the ion velocity. Then Eq. (13) may b
derived from Eq. (8) together with Ohm’s law [Eq. (17
and the relation$E ­ s4pivyc2k2d$j ­ s4pivmyc2k2d$jl

which follows from the Maxwell equations (4). This
yields the following values of the force parameters:

fk ­
B

ensc

µ
c2k2

4pivm

∂2

3

µ
4pivm

c2k2 1
sO 2 c2k2y4pivm

ssO 2 c2k2y4pivmd2 1 s
2
H

∂
,

(18)

f' ­
B

ensc

µ
c2k2

4pivm

∂2 sH

ssO 2 c2k2y4pivmd2 1 s
2
H

.

(19)

In the electrodynamic limitlk ø 1 our theory is valid in
a wider interval of the magnetic fields than in the case
arbitrary lk. One may use the equations averaged o
the vortex-array cell until the wavelength2pyk exceeds
the intervortex distancea ,

p
F0yB. But because of

l ø 1yk, this condition may be satisfied even ifa ¿ l,
i.e., rather close to the lower critical fieldHc1 where the
diamagnetism is important; i.e.,m is small. On the other
hand, in the electrodynamic approach our assumption
the beginning of this Letter that the current of norm
electrons is negligible is not necessary: one can use
conductivity tensor taking into account this current. Th
the theory is valid even close toHc2.

For the sake of simplicity we did not include th
elastic pinning force into our analysis explicitly, but it i
easy to do simply by replacing the viscous coefficienth

by h 2 aPyiv in all equations. HereaP is the bulk
pinning coefficient which may, in principle, depend o
the frequency as assumed by Dominguezet al. [3]. Thus
our analysis holds for any regime of vortex motion, eith
the nonactivated flux flow or the thermally assisted fl
flow (TAFF) with flux jumps over pinning barriers. Bu
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different regimes of the flux flow correspond to differe
expressions for the conductivities.

One can obtain the results of Refs. [1,2] from Eqs. (1
and (19) neglecting the Magnus force and the finite d
magnetism of the mixed state (sH , aM ­ 0, m ­ 1).
Note that the magnetic permeabilitym of Shapira and
Neuringer [1] relates to the atomic magnetism, whereas
latter was ignored in the present work and ourm is due to
the circular currents in the vortex-lattice cell and the d
ference between the local and average currents as a r
of them. However, finally the role ofm in the equations
is similar in both cases, as one might expect for an e
trodynamic theory.

Our analysis seriously differs from that of Domingu
et al. [3]: (i) They missed the anti-Magnus force in th
equation of ion motion. This caused violation of th
momentum conservation law and the wrong prediction
the Faraday effect in the dirty superconductors in wh
the anti-Magnus force is especially important. (ii)
Ref. [3] the equation of vortex motion was not Galilea
invariant, since it contained the vortex velocity in th
laboratory frame as if the latter were a preferential fram
But for our problem the only preferential coordina
system is one that moves with the ion velocity.

Experiment and theory [2] have shown that in a Bi s
perconductor there is a crossover between two temp
ture regions: the low-temperature region of high Ohm
conductivity due to high activation barriers in the TAF
model wherevh̃yDk2 ­ cth̃yDk ­ 4pvmsOyc2k2 .

1, and high-temperature regions of low conductivity whe
4pvmsOyc2k2 , 1. The predictions of Ref. [3] must b
revised for both regions. The Faraday rotation (the an
of polarization rotation per unit length) is given by

duydz ­
ensB

2minctc
Ref' . (20)

At low temperatures Dominguezet al. [3] obtained
that duydz ­ sHB2y2minctc2, whereas Eqs. (19
and (20) yield the Faraday rotation by the fact
sc2k2y4pvmsOd2 smaller. This factor is of order unity
at the crossover temperatureT , 60 K, but exponentially
small at low temperatures sincesO ~ expsUyT d where
U , 500 K for typical magnetic fields [2]. At higher
temperatures Dominguezet al. obtained the Faraday rota
tion duydz ­ eBy2mictc which did not depend on the
Hall conductivity. This meant that the Faraday effect w
possible in a dirty superconductor without the Magn
force even in the limitlk ! 0 in disagreement with
Refs. [1,2]. Dominguezet al. explained it by the effect of
the electromagnetic force~ f $E 1

1
c s $yi 3 $B dg in Eq. (9),

which was neglected in Ref. [2]. However, as explain
after Eq. (9), this equation should include also the a
Magnus force which cancels the electrodynamic force
the limit lk ! 0 restoring the result of Ref. [2]. Accord
ing to Eqs. (15) and (20) the Faraday rotation without
Magnus force (aM , sH ­ 0) is
)
-

e

ult

-

r

.

a-

e

-

du

dz
­

ensB
minctc

l2k2

1 1 l2k2

1
1 1 sc2k2y4pvmsOd2 .

(21)

For the frequency 3 MHz from Ref. [2] this expressio
yields atT . 60 K the Faraday rotation at least by a fac
tor of 1025 smaller than predicted by Dominguezet al.
[3]. So the Faraday effect in dirty superconductors is po
sible only atlk $ 1 when the frequency of ultrasound i
very high (about a few GHz). For the frequencies us
in the experiments now, the best conditions for obser
tion of the Faraday effect are clean superconductors w
large Hall angle at high temperatures. Then the Fara
rotation can be strongly amplified close to the resonan
with vortex modes [zeros of the denominator in Eqs. (1
and (19)], which exist in superclean high-Tc superconduc-
tors [7,13]. Thus the ultrasound experiment could rev
these modes [14].

In summary, the theory of interaction between the ultr
sound and the vortices in the type-II superconductors
been suggested. For the first time the theory takes i
account the Magnus force on vortices, the anti-Magn
force on ions, and the diamagnetism of the mixed st
self-consistently. This results in a serious revision of p
vious predictions concerning the acoustic Faraday effe
Despite this revision, our analysis confirms that pos
ble observation of the acoustic Faraday effect is expec
to provide a valuable information on vortex dynamics
type-II superconductors.
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