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Observation of Nonlinear Propagation of Spin-Entropy Wave in Superfluid3He

M. Bastea, H. Kojima, and P. G. N. deVegvar*
Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854

(Received 5 January 1996)

The propagation of a spin-entropy wave in superfluid3He-A1 was observed in a cylindrical chamber
with the magnetic field applied perpendicular to the chamber axis. A strong nonlinear response
observed as a function of drive amplitude. When the drive is relatively small, the resonant respon
hysteretic and is dependent on the direction of frequency sweep through the resonance. When the
is increased to a sufficiently large value, the response reverts to nearly linear dependence.

PACS numbers: 67.57.De, 47.37.+q, 67.57.Fg
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A chamber containing anisotropic superfluid phases
3He provides an intricate laboratory system in which
multaneously broken symmetries in gauge, orbital, a
spin space can be studied [1]. One consequence of
broken symmetries is that the measured superfluid c
ponent density depends on the direction and magnit
of the imposed superflow, the cell geometry, and app
magnetic field. There have been numerous theoretical
experimental studies on the “textures” of the orbital sy
metry vector in3He-A phase in which NMR is an excel
lent probe. There have been few experimental stud
related to orbital anisotropy in the spin-polarized sup
fluid 3He-A1 phase except for an early ultrasonic attenu
tion measurement [2]. The spin-entropy (second sou
wave propagation is a probe sensitive to textures in theA1

phase. In this Letter we report on the first observatio
of nonlinear propagation of the spin-entropy wave. W
show that the nonlinearity originates from the effects
superflow amplitude on the texture, which in turn chang
the propagation velocity. Unexpectedly, the nonlinear
does not continue to grow but the propagation reverts
quasilinear behavior at high drive amplitudes. The n
linearity is so severe that it occurs at velocities well b
low the onset of critical velocity effects. Comparisons
mechanical model systems and texture patterns obta
from free energy considerations are found to be consis
with these observations.

The usefulness of spin-entropy wave in studying tex
ral effects may be seen from the expression for its velo
[3] given to a good approximation by
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q̂aq̂b , (1)

whereq̂ is the unit wave vector,r the total mass density
x magnetic susceptibility,g gyromagnetic ratio, andm
the mass of3He. The propagation velocity depends
the texture through the superfluid to normal compon
density ratiosrsyrnd, which is a directionsq̂d dependent
quantity. Given a texturêl, the superfluid density may b
expressed as

frsgab ­ rsks2dab 2 l̂a l̂bdq̂aq̂b , (2)
0031-9007y96y76(15)y2766(4)$10.00
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where rsk is the superfluid density measured alongl̂
[4]. The textural pattern ofu [u ­ cos21sl̂ ? q̂d] is in
general determined by minimizing the total free ener
contributions from the dipolar, bending, and flow ener
subject to the constraint thatl̂ be perpendicular to the
walls. The spin-entropy wave velocity is thus intimate
related to thêl vector texture.

The resonant spin-entropy wave propagation appara
is similar to the one described earlier [5] except for o
crucial difference. The cell containing the resonator w
entirely reconstructed such that the resonator axis w
rotated by 90±. Thus the external magnetic fieldH is
now perpendicular to the spin-entropy wave vectorq̂.
This change in orientation made it possible to observe
nonlinear effects presented below. As before, oscillat
superleak membrane capacitive transducers [6] are u
to drive and detect the spin-entropy wave resonances
cylindrical chamber (radius­ 4 mm, length­ 12.7 mm,
q̂ k axis). The detector is dc voltage biased withVdc

and the motion of the membrane induces a voltage wh
is measured by a lock-in amplifier. A separate dc b
plus ac voltage,D cosvt, is applied to the drive. 3He
could easily be cooled into theA1 phase and the warm-
up rate was about 1 nKys. The liquid pressure was fixed
at 22.9 bars whereTc ­ 2.315 mK andsTc1 2 Tc2dyB ­
50.9 mKyT [7]. A melting curve thermometer and a
vibrating wire served as temperature sensors.

Examples of the measured response of the fundame
mode [8] are shown in Figs. 1(a)–1(c) forD ­ 1.15 V
and in Figs. 1(d)–1(f) forD ­ 2.6 V in a magnetic field
of 4 T. The temperature is about 13% ofTc1 2 Tc2 above
Tc2 and is just outside of the anomalous attenuation reg
[5]. The measured quadrature signals,x and y, and
computed magnitudeM (­

p
x2 1 y2) are shown for

the two directions of frequency sweep. Note the cle
hysteretic response depending on the direction of swee
Figs. 1(a)–1(c). The response is reproducibly observ
is not due to temperature change between the two swe
and does not depend on the order of the sweep direct
For each direction of sweep, the signal changes abru
and passes through maximum magnitudes,Mup andMdown,
at clearly identifiable frequencies,fup and fdown. For
© 1996 The American Physical Society
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FIG. 1. Measured hysteretic “in” (x) and “out” (y) of phase
and magnitude (M) signals at drive amplitudeD ­ 1.15 V,
(a)–(c), and 2.6 V, (d)–(f), for increasing (crosses) a
decreasing (circles) frequency sweeps. The lines repre
response of a nonlinear mechanical oscillator. See text.

D less than 1.15 V, the response becomes even m
abrupt atfup andfdown. As D is increased beyond abou
1.6 V, the abruptness gradually diminishes. Though th
no longer locate the abrupt changes, thef ’s andM ’s are
defined as indicated in Fig. 1(f). In the high drive lim
[Figs. 1(d)–1(f)], though there is a slight shift between t
two sweep directions, the response is nearly that of a lin
system. This change, from nonlinear to linear response
the drive level is increased, is surprising.

Qualitatively similar responses to those in Fig. 1 (a
in Fig. 2 below) are observed in the temperature ran
0.87 , sTc1 2 TdysTc1 2 Tc2d , 0.30. The range ex-
tends to well outside the region of the anomalous sp
entropy wave attenuation aboveTc2 previously reported
[5]. Thus we believe that the nonlinear effects report
here are not closely related to the anomalous attenua
Apparently the nonlinear effects do not depend stron
on the superfluid fraction (which varies by a factor of 2
the observed temperature range).
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FIG. 2. Measured frequencies [fup (crosses) and fdown
(circles) as defined in Fig. 1] where abrupt changes in respo
take place as a function of drive amplitude. The inset sho
the measured magnitudes,Mup (crosses) andMdown (circles)
as function of drive amplitude in the same measurement. T
solid and dotted lines represent the corresponding quantities
a nonlinear mechanical oscillator. See text.

The sensitivity of the capacitive oscillating superlea
transducers used here was analyzed theoretically [6].
der the simplifying assumption that the “liquid stiff
ness” is much greater than that of the membrane,
superfluid component velocity in the first mode is r
lated to the measured amplified voltageM by ys >
sQy4pd sMyGVdcdrCseyrs. Here Q is the quality fac-
tor andG is the amplifier gain. Inserting the appropria
values for the data in Figs. 1 and 2 (Q ­ 90, G ­ 100,
Vdc ­ 160 V, rsyr ­ 8 3 1023, Cse ­ 2.1 mys) gives
ysyM ­ 0.12 smysdyV.

The measured drive dependences offup, fdown, Mup,
andMdown are shown in Fig. 2. The figure illustrates th
highly nonlinear behavior at low drive levels and esse
tially linear behavior at high drive levels. While ther
is little drive dependence tofdown, the drive dependence
of fup is much greater. Evidence of nonlinearity is pe
haps most dramatic in the drive dependence ofMup. As
D is decreased below 1.6 V,Mup decreases sharply de
viating from the linear response at greaterD. On the
other hand,Mdown is almost proportional toD over all of
the measured range. WhenD is decreased below 0.5 V
the resonant response becomes unstable and irreprodu
from one set of sweeps to another. This, and not
noise level, is responsible for the lack ofMdown data in
this range. The texture seems to fluctuate and a sta
one does not seem to be established by the small su
flows. The low superflow limit will be further investi-
gated in future studies. It should be emphasized that th
2767
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hysteretic and nonlinear responses were not observed w
H k q̂ [5].

The qualitative features of the observed nonlinear
havior of spin-entropy wave may be explained as follow
Given the magnetic field applied to3He contained within
the resonator and a small superflow (due to a residual
leak), the fluid should stabilize to an “undisturbed”l̂ and
d̂ texture pattern. Generating spin-entropy waves impo
oscillatory probe superflows in the chamber. If the pro
superflow is so weak that the texture is not modified,
measured speed of the spin-entropy wave is determine
the undisturbed texture. In the present experiment,
weak flow limit is not observed. As the probe superflo
is increased, the superflow begins to alignl̂ in the region
away from the walls towards the flow direction, there
decreasing the kinetic energy contribution to the free
ergy (see below). This change in texture decreases th
fective superfluid fraction “seen” by the spin-entropy wa
and therefore its speed. The flow-induced texture trans
mation leads to the observed “soft” nonlinear response.
the superflow velocity is increased further, the region ol̂
alignment spreads towards the walls. Sincel̂ is constrained
to be perpendicular to the walls, this requires sharper be
ing hence greater bending energy. As the cost in bend
energy becomes greater, the flow-induced alignment te
to saturate. In this large flow limit the response reverts
linearlike behavior as observed in the experiment.

The mechanism of the nonlinearity just described m
be modeled by a driven spring-mass oscillator who
spring constant decreases as the amplitude is incre
[9]. An equation of motion given bÿz 1 k Ùz 1 azs1 1

bz2dys1 1 cz2d ­ G cosvt describes such a nonlinea
oscillator [10]. Herez is the displacement of the mas
a1y2 andsabycd1y2 are the resonant frequencies in the lo
and high amplitude limits, respectively. The dissipatio
assumed independent of drive, is represented byk ­
sabycd1y2yQ whereQ is the quality factor. The oscillato
is driven at frequencyv with amplitudeG. Assuming
a solution of the formz ­ x cosvt 1 y sinvt leads to
third order polynomial equations forx and y when
higher harmonic terms (whose presence was searche
but could not be detected) are neglected. The coup
equations may be solved forx andy.

The observed frequency response of Figs. 1(a)–1
was fitted with the mechanical oscillator solution by a
justing parametersa, byc, G, and k. Since abyc and
Q may be set by the large drive limit response, the
are two remaining adjustable parameters. The fitted
sponse (witha1y2 ­ 2p 3 94.3 s21, byc ­ 0.793, G ­
3.1 3 104, and Q ­ 90), shown in Fig. 1, gives a fair
representation of the observed 1.15 V drive data. It
be seen that the observed sweep-direction dependen
the response comes from the double-valued respons
such a nonlinear oscillator. The slightly rounded respo
observed at bothfup andfdown (where a discontinuity is
expected from the model) becomes sharper at higher t
2768
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peratures and is not well understood. The fitting para
eters for the 2.6 V drive data are kept the same as
1.15 V except for the drive level parameterG which was
simply increased proportionately to the drive.

By keeping all parameters (exceptG) fixed to the
values that gave a good fit to 1.15 V drive data
Fig. 1, the values offup , fdown, Mup, and Mdown were
obtained as functions of drive from the response curv
generated from the mechanical model solutions. The lin
in Fig. 2 represent smoothed curves through these val
The model solution describes the observed rapid incre
(decrease) infup (Mup) in the interesting small flow range
It also describes the observed smaller change infdown and
nearly linear change inMdown in the small flow range.
As the drive level in the model is increased beyond 1.5
fup becomes greater thanfdown. Similarly Mup exhibits
a kink as the hysteretic response begins to disappear.
the high drive limit, the solution to our mechanical mod
gives a single-valued response in contrast to the obser
sweep-direction dependent response. Though small,
origin of the sweep-direction dependence in the high dr
limit is not understood within this model. In spite o
its simplicity, the mechanical model gives a fairly goo
description of our observations.

The question of how thêl texture changes asys is
increased will now be addressed. To review briefly [4
recall that the order parameter of theA1 phase may be
defined using two triads of real orthogonal unit vecto
(d̂, ê, f̂ ­ d̂ 3 ê in spin space, and (̂m, n̂, l̂ ­ m̂ 3 n̂)
in orbital space. Minimizing the magnetic free energ
while taking into account the anisotropy of the magne
susceptibility shows that̂f is directed along the applied
magnetic fieldH (k ẑ) and, therefore, the unit vector
(d̂, ê) are forced into thex̂-ŷ plane. The orientation
dependent part of the dipolar interaction energy betwe
Cooper pairs can be written as (gsf̂ ? l̂d2, whereg is a
positive constant. The dipolar energy is then minimiz
when f̂'l̂ and the l̂ vector is also forced into thêx-ŷ
plane. The relative orientation ofl̂ with respect to (̂d, ê)
in the x̂-ŷ plane is arbitrary in theA1 phase (unlike inA
andA2).

To determine the equilibrium̂l vector texture in
the x̂-ŷ plane, the sum of kinetic and bending energ
contributions to the total free energy is minimize
subject to the constraint that̂l be perpendicular to
the boundaries [1,11]. The kinetic energy density
written as Fkin ­ s1y2drsrsyrndabysaysb (summa-
tion over repeated indices is implied). The bendin
free energy can be expressed as a sum of com
nations of products of gradients inc , f, and u,
defined as c ­ cos21sx̂ ? d̂d, f ­ cos21sẑ ? n̂d, and
u ­ cos21sx̂ ? l̂d. In the presence of superfluid compo
nent flow in theA1 phase, the broken relative spin-orbita
gauge symmetry requires thatysa ­ sh̄y2md sm̂ ?

≠n̂y≠a 1 d̂ ? ≠êy≠ad ­ 2sh̄y2md s≠cy≠a 2 ≠fy≠ad
[3]. Taking q̂ and vs to be along thex̂ direction,
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we obtain FbendyF0 ­ s4m2y2
s yh̄2d s3 2 cos2ud 1

u
2
0xs2 1 cos2ud 1 u

2
0ys2 2 cos2ud 1 2u0xu0y sin2u 1

u
2
0z 1 s4mysu0zyh̄d cosu, where u0a ; ≠uy≠a, F0 ­

3h̄2Nrsks1 1 F1y3dy32mpr, N the number density,F1

a Fermi liquid parameter, andmp effective mass of3He.
The equilibrium texture in theFkin ­ 0 limit was previ-
ously solved by numerical methods on a two dimensio
square grid [12]. We incorporate the kinetic contributio
through an adjustable healing length parameterj and
require that our solution reproduces that of Ref. [12],
the limit of zero flow and for square boundary [13]. F
given ys the total free energy was evaluated as a funct
of j by integrating over the volume of the cylinde
The total free energy was minimized at a unique va
of j which specified the equilibrium texture for th
given ys [13]. The calculated equilibrium texture fo
ys ­ 8 mmys is shown in the inset of Fig. 3.

A full analysis of the transducer response in terms
the calculated texture is quite complicated in detail.
is found, however, that the essential physics may be c
tured using a simpleys dependent volume-averaged s
perfluid densityr̄s which is evaluated for the texture usin
Eq. (2). The ratior̄syrs' (wherers' ­ 2rsk) is shown
as a function ofys in Fig. 3. The low flow linear re-
sponse region is limited to smallys & 2 mmys. At high
velocities, the texture tends to saturate as the cost inFbend
grows. If l̂ becomes parallel tôq throughout the cell,
r̄syrs' would be 1y2. Figure 3 demonstrates that the a
erage superfluid density seen by the spin-entropy wave
creases and eventually saturates asys is increased. This
is consistent with our observations. The amplitude d
pendence of the superfluid density is analogous to
“spring constant,”as1 1 bz2dys1 1 cz2d, in our mechan-
ical model. The amplitude dependence of the spring c
stant resembles that ofr̄syrs'.

According to the estimate of our transducer calibratio
the superfluid component velocity amplitude would

FIG. 3. Calculatedr̄syrs' for the equilibrium texture as a
function of superflow velocity. Inset:̂l texture whenys ­
8 mmys.
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43 mmys at D ­ 2.6 V in Fig. 2. At this velocity the
calculatedr̄syrs' is 0.52 as seen in Fig. 3. The estimat
r̄s from the measuredfup at the sameD and the
rs' measured earlier [5] under the same conditions
magnetic field, pressure, and temperature giver̄syrs' ­
0.54. This is close to the calculated value of the ratio.

In conclusion, we have observed nonlinear propaga
of spin-entropy (second sound) waves in3He-A1 filling a
resonator. The salient features of this phenomenon
consistent with the sound generated superflow alte
the l̂ texture within the resonator, thereby modifying t
volume-averaged propagation velocity.
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