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Free Energy Contributions to the hcp-bcc Transformation in Transition Metals
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The electronic and vibrational free energies of some hcp and bcc transition metals are computed
ab initio. The vibrational part is obtained from a total-energy calculation over lattices with atoms
randomly displaced according to a Gaussian distribution. The relative importance of electronic and
vibrational excitations in the stabilization of the high-temperature bcc structure is clarified.

PACS numbers: 64.70.Kb, 65.50.+m, 71.10.—w, 71.15.Nc

An ab initio account of the relative stability of solid dependent equations for the total energy and thermal
phases with different crystal structures, expressed as @essure can be found in Ref. [9]. Two different exchange-
Gibbs energy differencAG, is a major goal in current correlation energy functionals were used—the local
research. For transition metals in fcc, hcp, and bec latdensity approximation (LDA) [11] and the generalized
tice structures, the previous apparent discrepancy in songradient approximation (GGA) [12]. As found in previ-
systems (e.g., W) betweeab initio and semiempirical ous calculations [13], GGA agrees somewhat better than
(“experimental’)AG at zero kelvin has been recently re- LDA with the experimental equilibrium volume and bulk
solved [1,2]. Thus there is no doubt that first-principlemodulus, in particular for th8d metals. However, our
electronic structure calculations vyield reliable results forconclusions concerning tife-dependent results (including
AG(T = 0 K). Contrasting this progress, little has beenthe vibrational part) are the same using GGA and LDA.
done to provideAG(T) ab initio at finite temperatures. This Letter presents only the GGA results.

The main problem is to describe simultaneously and with The electronic contributionG,; = E.; + PV — TS
equal accuracy the thermal excitations of the electronic dds obtained from an integration ovéi(e), the density of
gree of freedom and the phonons, including anharmonicitystates (DOS), wher&,, is the total energyP the pres-
While the electronic pariGe, is fairly straightforward sure,V the volume,S,; the entropy, and all the quantities
to calculate also for transition metals [3,4], the phononssary with the temperaturg [8]. We neglect the electron-
present a major difficulty. A simple approach is to relatephonon many-body enhancement, which is important only
Debye temperatures &b initio calculated bulk moduli [5].  at low temperaturesl( < ©p/4) [14]. Table I gives cal-
Detailed information on the phonon spectrum could be obeulated results obtained with GGA potentials at 0 K along
tainedab initio through “frozen phonon” calculations [6], with the corresponding experimental values. For the hcp
where, in principle, softening of special modes could bestructure, the:/a ratio was fixed to 1.59 which is close to
followed as a function of” and volume. But that would experimental data. The structures of all elements are cor-
be too demanding for a systematic comparison of the virectly reproduced and the bcc-hcp structural energy dif-
brational pariAG,;, for a large group of transition metals. ferences do not differ from previowd initio LDA results
Here we shall use an approach [7] that in certain aspec{d7]. The values in Table | change as the temperature is
resembles frozen phonon calculations, but relies on an avaised because the free energy has an additional contribu-
eraging procedure over the phonon spectrum that make®n from the entropy.

the calculation ofAG,;}, tractable. We calculatAG.(T) To understand the behavior of the electronic entropy
andAG,;(T) for Sc, Ti, V, Cr, Y, Zr, Nb, and Mo. The we compareN(e) of the bcc and hcp phases in Fig. 1,
results are used to understand the Higltabilization of and recall that the entropy is roughly proportionalMte)

the bcc phase in Sc, Ti, Y, and Zr, from a Idvhcp  within k3T of Er. For metals with fewd electrons such
phase, and the stability of bcc V, Cr, Nb, and Mo at allas Ti and Zr Er is still within the low N (€) region in the
temperatures. hcp phase, while in the bcc phad&Ef) is much larger.

The thermal electronic contribution to the Gibbs energyThis fact will decrease the entropy teraTS.; faster for
is computed using the linear-muffin-tin-orbital (LMTO) the bcc structure than for the hcp, and the total free energy
method withT as a variable [8—10]. The temperature- differences between the two phases show a crossover at a
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TABLE I. Computed structural and ground-state propertié, is the equilibrium volume
andB, is the bulk modulus. Experimental volum¥&s,, and bulk moduliB.,, are taken from
Refs. [15,16].

VO Vexp BO Bexp thp _ Vbcc Ehcp _ Ebcc
Element Structure (a.). (aud) (kbar) (kbar) (a.l®) (mRy/atom)
Sc hcp 171.8 168.7 533 558 —1.20 -39
Ti hcp 121.3 119.1 1076 1050 0.89 —4.6
\% bcc 94.2 94.6 1761 1570 3.02 25.0
Cr bcc 81.0 80.6 2454 1914 2.53 36.6
Y hcp 227.0 222.9 369 366 —1.32 —5.1
Zr hcp 162.5 157.1 884 965 2.35 -2.9
Nb bcc 127.7 1215 1616 1700 3.39 29.7
Mo bcc 111.2 105.3 2321 2640 2.21 36.5

certain temperatur@,. A similar evaluation for Cr and experiment. TheG.(T) curves are rather flat at lo@,

Mo gives an opposite trend. The Fermi energy in the bcand a small vertical shift of one of the curves relative to
phase is in a valley oiV(e) with small values ofV(Er),  the other will considerably shifl,. The present results
while the hcp phase has a lary€E ) (see Fig. 1). Hence indicate that the bcc lattice in Sc, Y, Ti, and Zr at very
the entropy term will diminish the large difference betweenhigh T' can be stabilized by electronic thermal excitations.
the free energies of the two phases, implying a transition The method for thermal disorder is based on LMTO,
from bcc to hcp at largel’. However, the difference but with the structure matrix averaged over various con-
AG. (T = 0) between hcp and bcce structures is so largdigurations and reduced to a form for a few atoms per cell.
(36 mRy/atom) that the crossover ifi,; can happen only Vibrational disorder is obtained assuming that each atom
at temperatures much above the melting temperature, &fs a displacement given by a Gaussian function witts

P =0. In Cr and MoAG., becomes smaller at high
pressures.

Figure 2 shows the calculated zero-pressure electronic 8/
Gibbs energyAG.(T), the differencesAE.(T) and
TAS. (T) between the bcc and hcp structures as a func-
tion of temperature. Note that the energy scale differs for
different elements. The hcp-bcc transition temperature

T . oo : . = 0
T, implied by the electronic contribution only is obtained £
from the intersection oA G (T) with the zero energy axis. kS
For Sc, Y, Ti, and Zr we gef, = 4300, 4800, 2050, and & 8
1500 K, respectively, from\G.(T) = 0. This is larger E 4
than experimental values, but it is satisfactory to see that 2 o]
the relative variation of; among these elements follows G |
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FIG. 1. (a) Density of states for bcc (solid line) and hcp (solid line), total energ\AE,; (dotted line), entropy terrirAS,,
(dotted line) Zr and qualitative indications of the Fermi level (dashed line), and vibrational Gibbs enedy.;, (long dashed
for the other metals. line) between the bcc and hcp phases.
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mean square displacement around the equilibrium positiorenergies, but a precise determination of the vibrational

The Gaussian distribution function is valid in the harmonicenergy is needed for a quantitative description of the hcp-

approximation and cubic symmetry, but we apply it also tobcc transition temperature.

the hcp lattice, and randomly generate atomic positions in It is instructive to describe further the role of vibra-

large supercells, before the averaging of the structure maional properties by computing a Debye temperatBie

trix is done [7]. This method does not describe selecteénd two different approaches are considered. First, the

phonons but it deals with Gibbs energy differences of disDebye temperature®,) is obtained through the com-

ordered structural configurations of hcp and bcc lattices. puted vibrational energieg (o) and within a harmonic
The parameter of disorder is related to the tempera- approximation of lattice vibrations, expressed as [7,18]

tureT. If the vibrations were harmonic, with = 0 and 0% = 55 [1 azE(;r) @9 is temperature dependent
M do0?* ’

: 3k
at high temperaturesi'(> 0p), o and 7" would be re- 51, pecause of lattice dilatation and because of explicitly
lated throughH,ip (o) — Hyin(0) = 2kgT. WhenH,i,  anharmonic interactions present also at fixed volume.

includes anharmoncity, and does not varyods we use Second, the Debye temperature is evaluate® 3s—
the thermodynamic relatiodH = TdS + VdP to define

a temperaturd as

(%)1/6%\/% where rys is the equilibrium Wigner-

Seitz radiusM is the atomic weight, an® is the bulk

T <8Hvib> <9_U> . (1)  modulus [19]. Moruzzi, Janak, and Schwarz [5] used the
do /p\dSyiv/p above expression multiplied by an empirical constant to

Then we use the classical (i.e., f6r> @) expression estimate® p for 14 nonmagnetic metals. It is not as good
for the entropy, which containg (obtained through a to use the bulk modulus to derive a Debye temperature

phase-space-volume relation) and yields a terfa1i that gives the low-temperature heat capacity, since then the
ie (asvib 3 shear modulus is the important elastic constant. However,

vibrati%an ;f G:ibgé eﬁgfgévf(lit)mis;:?(rf) ??gii?{% the we hr?lve found that the D_ebye temperature to be used in

of both structures. Here we are mainly interested in resul’® high-temperaturéy;, is well correlated to the bulk

atP = 0. ThereforeG,;y(o) for each element has to be Mmodulus B, in particular when one also makes a small

minimized with respect to the lattice parameter whers correction dept_—zndmg on the PO'SSOD number._ .

varied to correspond to a maximumof a few thousand These two different approaches give very similar trends
for all computed Debye temperatures except for Scand Y,

nd they also compare very well with experimental values

kelvin.
The difference between the vibrational Gibbs energle%See Table Il). The estimated differencesé for both
structures are very small (a few kelvin) fd@ metals

of bcc and hcp structures is given by

AGyin(T) = HE(0pee) — Hysy (0hep) and they are larger fosd metals (20-30 K). Because
oV AG,;p at highT depends only on the ratio of the Debye
—TlIn %, (2) temperatures for the bcc and hcp structures these results
Thep Vhep confirm the picture that leads to a smalG,;,.

where opee = ovee(T) and o, refer to the degree of  Neutron scattering data [21] for Ti show tap /NP

disorder at a giverT for the corresponding phases. Ouris =0.9 at7, =~ 1156 K of the hcp-bcc transition. How-
Gaussian ansatz allows for the thermal-expansion effecver, ifG)gCp is smoothly extrapolated to high temperatures
on the phonons in the quasiharmonic approximation, buf22], one finds for Ti that close to the melting temperature
it leaves out most of the other anharmonic effects. How+s, = 1933 K, ® is indeed somewhat Iargerthﬁ}ﬁ‘:p,
ever, we are primarily interested in the differens&,;;,

between two solid phases. If the additional anharmonicTABLE Il.  Theoretical and experimental Debye temperatures
terms of the hcp and bee phases are approximately equ%ﬁ and®} are obtained from our calculated vibrational energy

they will cancel inAGyip. nd bulk modulus, respectively.®; and @5* are Debye

Figure 2 Sh_OWS (long dashed line) .the computedemperatures derived from the entropy at 298 K, and from low-
AG,iv(T) for Ti, V, Cr, Zr, Nb, and Mo. Itis found that temperature data [16,20].

AG,;p is not the major cause in driving a low-temperature
hcp structure to the high-temperature bcc phase, contrany,
to what is sometimes stated. Howev&(;,;,, is of course

04 05 05 05?
Structure (K) (K) (K) (K)

important for the precise value df, since AG.; varies Sc hcp 200 266 311 358
rather slowly withT nearT,. For V, Cr, Nb, and Mo, Ti hcp 360 348 352 425
V bcc 460 411 384 399

AG,;,(T) is also very small compared to th&FE.;(T)
term. In Sc and Y because of the higher fraction of de-
localized electrons over localize3y states, we do not Y hcp 140 165 211 256
get an equally accurate vibrational energy and we refrain é{) E‘é‘i’: é:;’g égg ggg 333
from definite conclusions in that case. These examples

- . .~ Mo bcc 360 354 380 474
show that the phase stability depends heavily on electronie
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