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Scaling Properties of the Critical Nucleus in Classical and Molecular-Based Theories
of Vapor-Liquid Nucleation
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Scaling relations are developed for the numbergp of molecules in the critical nucleus and the
nucleation barrier heightW p. Density functional (DF) calculations for vapor-liquid nucleation confirm
these relations and show systematic departure of the ratioWpygpDm from its classical value of1y2 with
increasing differenceDm in the chemical potential between the supersaturated vapor and bulk condensed
phase. Discrepancies between classical and DF nucleation theories and between the classical theory
and experiment are interpreted using these results.

PACS numbers: 64.60.Qb, 68.10.–m, 82.60.Nh, 82.65.Dp
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It has been recognized in recent years that homo
neous vapor-liquid nucleation plays a central role in ma
atmospheric processes. Accordingly, considerable at
tion has been paid to formulation of phenomenologi
theories, which try to predict nucleation rates quant
tively starting from macroscopic, measurable properties
fluids (for a review, see [1]). However, at present it is n
clear that any of these theories is overall more succ
ful than the classical nucleation theory [2]. On the oth
hand, more fundamental theoretical approaches that ai
describe the properties of nucleating clusters on a mo
ular level have been developed [3,4] in parallel with mo
sophisticated experimental techniques [1]. Below, we
rive scaling properties for the critical nucleus which are
harmony with novel findings from both experimental a
theoretical studies, and which it is hoped will guide t
phenomenological efforts in a more productive directio

Consider the nondimensional ratioWpygpDm, where
Wp is the nucleation barrier height,gp is the number
of molecules in the critical nucleus, andDm is the
free energy difference between the vapor, at a gi
saturation ratioS, and the bulk condensed phase drivi
the phase change. In classical nucleation theory (CN
and related descriptions, for example, scaling correlati
based on the capillary drop model [5], it is know
that Wpygp

CNTDm ­ 1y2 (see also Viisanenet al. [6]).
In this Letter we examine the critical nucleus bo
in CNT and density functional (DF) theory and sho
systematic departure inWpygpDm from its classical
value with increasingDm. We first treat the genera
case of molecular clusters, and then specialize to
nonuniform spherical drop model of the critical nucle
for comparison with DF theory. Finally, the scalin
relations are shown to provide a simple explanation
reported systematic discrepancies between CNT and
theory, and between CNT and experiment [7].

The scaling relations are based on Eq. (1), which
been called the nucleation theorem [8],
754 0031-9007y96y76(15)y2754(4)$10.00
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Wp ­ 2gp. (1)

Derivation of Eq. (1) for the classical nucleus wa
achieved by Kashchiev [9] who suggested its validi
beyond the CNT. Viisanenet al. [6] follow a statistical
mechanical approach, linking Eq. (1) with the properti
of a constrained cluster distribution in the grand ense
ble. Their results indicate that the nucleation theore
holds for arbitrary shaped clusters (the fluctuation do
not have to be a drop), for multicomponent cluster
and even for clusters of noncritical size. Oxtoby an
Kashchiev [8] follow a thermodynamic approach in the
description of a multicomponent spherical drop nucle
using a dividing surface model for the interface. Lat
in this Letter we use the dividing surface approach
obtain a formally exact expression forWpygpDm for a
single-component nucleus in the nonuniform drop mode

Equation (1) greatly restricts the form thatWpygpDm

can take as a function ofDm. To derive the scaling
relations, consider the general expression

Wp

gpDm
­

1
2

2 fsgp, Dmd , (2)

wherefsgp, Dmd gives the departure from CNT. Differ-
entiating Eq. (2) using the nucleation theorem gives

Dm
d

dDm
gp 1 3gp ­ 2

d
dDm

sfgpDmd . (3)

To simplify the notation, the argument off has been
suppressed.

In the classical theoryf ­ 0 and the solution of Eq. (3)
for gp is a homogeneous function of the form

gp
CNT ­ CsT d sDmd23 (4a)

with CsT d a function temperature alone. Equation (4
has the form required by the capillary drop model of CN
which yields an explicit formula forCsT d through the
Kelvin relation (2)

gp
CNT ­

32pg3
`

3r
2
l

sDmd23. (4b)
© 1996 The American Physical Society
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nt
rl is the molecular number density in the condens
phase, which is assumed to be uniform in the capilla
approximation, andg` is the surface tension for a fla
interface; curvature effects to the surface tension are
included in the CNT.

In general,f is nonzero, and without additional physic
Eq. (3), which is simply an identity between its left- an
right-hand sides through the nucleation theorem, can
be solved. We assume here that each side of Eq
vanishes as in the classical theory, yielding a unique c
of homogeneous solutions, forgp and for the productfgp,
as a generalization of the classical theory

gp ­ C0sTd sDmd23 (5a)

and

fgp ­ DsT d sDmd21, (5b)

where the integration constantsC0sT d and DsT d are
functions only of T . (It is shown below thatfgp is
related to the superficial density [8].) Although th
homogeneity ansatz leading to Eqs. (5) is physica
reasonable, we cannot prove it in general and b
its justification on agreement with experiment and w
calculations that follow. A reformulation of the ansa
in the nonuniform drop model is described followin
Eq. (13) below. Classical nucleation theory is recove
for DsTd ­ 0. Comparison of Eqs. (4a) and (5a) show
that in order to havegpygp

CNT ! 1 asDm ! 0 we must
haveC0sT d ­ CsT d or

gp ­
32pg3

`

3r
2
l

sDmd23 ­ CsT d sDmd23, (6)

suggesting that the Kelvin relation [Eq. (4b)] has valid
beyond the capillary drop model of the classical theory

Equations (2) and (5b) have the interesting con
quence that the displacement between barrier height
the classical and present theories is a function only ofT ,

Wp 2 Wp
CNT ­ Wp 2

1
2

gpDm ­ 2DsT d . (7)

Combining Eqs. (6) and (7) gives

Wp

gpDm
­

1
2

2
DsT d
CsT d

sDmd2, (8)

showing recovery of CNT along the coexistence cur
Dm ­ 0, and quadratic dependence in the depart
from CNT with increasingDm. Note that whileCsT d
is determined by Eq. (6), the functionDsT d must be
obtained by a separate, model-dependent, calculatio
now described.

In the DF theory of vapor-liquid nucleation [10] th
nucleus is modeled as a nonuniform spherical drop.Wp

is calculated from the grand potential, which can
expressed as an integral over the tangential compone
the pressure tensorPT . The latter is equal to minus th
d
y

ot

ot
3)
ss
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free energy density [11], and can be written as [12]

PT srd ­ Phsssrlsrdddd 1
1
2

rlsrd
Z

rlsr 0dwsjr 2 r 0jd dr 0.

(9)

HerePhsrd is the pressure of a uniform hard-sphere flu
at the equilibrium density,rlsrd, and wsjr 2 r 0jd is the
attractive part of the pairwise intermolecular potenti
The equilibrium density is obtained from Eq. (9) usin
an iteration method as described by Zeng and Oxtoby
The nucleation barrier height may then be obtained fr
PT srd using [12]

Wp
DF ­ 24p

Z `

0
r2fPT srd 2 P0g dr , (10)

where P0 is the pressure of the vapor surrounding t
drop. Finally,gp

DF is obtained from the density profile,

gp
DF ­ 4p

Z `

0
r2frlsrd 2 r0g dr . (11)

Both gp and gp
DF represent the excess number

molecules present in the volume over the number pres
prior to cluster formation and are independent of t
choice of dividing surface (see below). This definitio
differs from the capillary drop model, where the tot
number of moleculessgp

CNTd present within the spherica
boundary defined by the critical radiusrp is used [13].

The scaling relations, Eqs. (6)–(8), are demonstra
here through comparisons with results obtained from
calculations for the Lennard-Jones fluid model of Ref. [
The abscissas of Figs. 1 and 2 contain the ratio of ac
to equilibrium vapor fugacities,fyf0 ­ expsDmykT d,
wherefyf0 approachesS in the dilute vapor limit. Fig-
ure 1 shows the linear dependence betweengp andDm23

predicted from Eq. (5a) at several different temperatur
Slopes obtained from the DF calculations (lines in Fig.
are in good agreement with the predicted values fr
Eq. (6). Table I compares the barrier heights in the cl
sical and DF theories at fixed temperature. Note, in c
formity with Eq. (7), that the displacements, given
column 5, vary by only a few percent while the ba
rier heights themselves vary over an order of mag
tude. From the average displacement we obtainDsT d ­
19.8kT at this temperature. Substitution ofDsTd, deter-
mined as in Table I from the average barrier height d
placement at each temperature, andCsT d, from Eq. (6),
into Eq. (8) gives the results shown in Fig. 2. There a
no adjustable parameters in this comparison as the o
unknown parameter contributing to the slopeDsT d is ob-
tained from the DF calculations.

To conclude the treatment of the spherical drop nucle
we derive a formally exact expression forWpygpDm

using dividing surface arguments [14]. These metho
yield, as the first equality in Eq. (12) below, an equati
similar to Eq. (10) but in terms of the normal compone
of the pressure tensorPN . [Adding the two expressions
2755
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FIG. 1. Density functional results forgp (markers) and com-
parison with scaling (lines) from Eq. (5a). Temperatures
given in reduced unitskTy´, where´ is the characteristic en-
ergy for the Lennard-Jones system of Ref. [4].

yields a generalization of the Gibbs relation for3Wp as
a volume integral overPN srd 2 PT srd.] For the choice
that the dividing surface is placed at the radiusR ­
Rs, where Rs defines the surface of tension [2,14], th
methods described in Ref. [14] furnish the second equa
in Eq. (12),

2Wp ­ 4p
Z `

0
r2fPN srd 2 P0g dr

­ 4p
Z Rs

0
r2sPa 2 P0d dr ­

4pR3
s

3
rlDm

­ np
LDm , (12)

which converts the integrand to a step function equal
Pa 2 P0 for r , Rs, wherePa is the interior pressure a
the center of the drop, and equal to zero forr . Rs. The
third equality, which assumes incompressibility and lo
vapor density, relates the change in chemical potential,
bulk interior phase density,rl ­ rls0d, and the difference
in pressure at the center and outside of the drop. From
first and last terms in Eq. (12) we obtain the solution

Wp

gpDm
­

1
2

np
L

gp
­

1
2

"
1 2

np
S

gp

#
, (13)

where np
L is defined as the number of molecules co

tained within the volume bounded by the surface of te
sion for uniform interior density equal torl. The second
equality of Eq. (13) follows fromgp ­ np

L 1 np
S 2 np

V ,
2756
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FIG. 2. Density functional results forW pygpDm (markers)
and comparison with scaling (lines) from Eq. (8). Temper
tures are as reported in Fig. 1. DF results at each tempera
are for the same conditions as in Fig. 1. Horizontal lines a
the prediction of classical nucleation theory.

wherenp
S divided by4pR2

s is the superficial density and
np

V ­ 4pR3
s y3 times the vapor density [8]. [In confor-

mity with the third equality in Eq. (12), we have no
included the displaced vapor componentnp

n.] Thus we
obtainWp ­ np

LDmy2, highlighting the importance ofRs,
while the equimolecular dividing surfaceRe provides a
very good approximation for the classical radiusrp [15].
The equality DsTd ­ np

SDmy2 from Eqs. (7) and (13)
provides a physical interpretation for the departure fro
CNT in terms of the superficial density.

The homogeneity ansatz can be simply reformulated
terms of the equimolecular dividing surface as follow
Consider for simplicity an incompressible nucleus in th
limit of low vapor density. The conditiongp ­ gp

CNT
from Eq. (6) implies thatRe ­ rp becausenp

S vanishes at

TABLE I. Critical nucleus properties atT ­ 0.8´yk, where
´ is the characteristic energy for the Lennard-Jones system
Ref. [4] and k is the Boltzmann constant. EnergiesDm and
W p are in units ofkT .

Dm gp Wp
CNT W p

DF W p
CNT2 W p

DF

0.607 562.6 170.7 151.0 19.7
0.863 200.0 86.3 66.0 20.3
1.089 100.4 54.7 34.6 20.1
1.362 50.9 34.7 15.6 19.1
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the equimolecular surface, and we assume that the v
displaced by the nucleus is negligible. For the cen
pressurePa to have the same value in the capillary a
nonuniform drop models [Eq. (12)], this equality of rad
and the generalized Laplace relation [14] requireg` ­
ge 1 sRey2ddgeydRe, where ge is the surface tension
at the equimolecular dividing surface. This condition
equivalent to homogeneity because the converse, lea
to equality of gp and gp

CNT as required by Eq. (6), als
applies. The pair of conditions,ge ­ g` anddgeydRe ­
0, used in constructing the working formulas of CNT [
is seen to be a special case of the present theory.
reformulation provides context for the homogeneity ans
used to separate Eq. (3) and can be used as an alte
basis on which to develop the present theory.

In addition to providing an excellent description of th
DF results, the scaling theorems [Eqs. (6)–(8)] are s
ported by experiment. Each of the factors inWpygpDm

is subject to measurement [6]. Rate plots of lnsJd vs lnsSd
at constantT , whereJ is the nucleation rate, have bee
used to compare CNT and DF theories, and CNT and
periment [6,7]. It has been observed that CNT provid
accurate estimates for the number of molecules in
critical nucleus as derived experimentally from the slo
d lnsJdyd lnsSd, using the nucleation theorem [6,7]. An
other observation is that the curves for lnsJd tend to be
uniformly displaced vertically with respect to each oth
in such comparisons. Specifically, the ratiosJCNTyJexp
and JCNTyJDF , while dependent on the temperature, a
only weakly dependent onDm [7]. The scaling theorems
provide a simple explanation for these observations.
the first case, the equalitygp ­ gp

CNT from Eq. (6) jus-
tifies the observation that CNT is an excellent predic
of the number of molecules in the critical nucleus.
the second case, the constant displacement inWp from its
classical value [Eq. (7)] implies a constant displacem
in lnsJd ­ lnsKd 2 W pykT . (Differences in the loga-
rithm of the rate prefactorK are usually negligible in such
comparisons.) These results suggest that the system
discrepancies observed between CNT and experiment
be effectively parametrized by the single scaling param
ter DsT d in the present theory.

The scaling theorems constrain the departure from C
and therefore can guide the construction of phenome
logical nucleation theories. Like the nucleation theor
itself, extensions of the present approach will likely app
to multicomponent systems. Finally, the statistical fou
dation for homogeneity and its limits of validity remain
be explored.
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