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Scaling relations are developed for the numigérof molecules in the critical nucleus and the
nucleation barrier heigh*. Density functional (DF) calculations for vapor-liquid nucleation confirm
these relations and show systematic departure of the Watj@*A . from its classical value of /2 with
increasing differencd . in the chemical potential between the supersaturated vapor and bulk condensed
phase. Discrepancies between classical and DF nucleation theories and between the classical theory
and experiment are interpreted using these results.

PACS numbers: 64.60.Qb, 68.10.—m, 82.60.Nh, 82.65.Dp
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It has been recognized in recent years that homoge- dTW = —g". (1)
y72

neous vapor-liquid nucleation plays a central role in many ]
atmospheric processes. Accordingly, considerable attef€rivation of Eq. (1) for the classical nucleus was
tion has been paid to formulation of phenomenologicafchieved by Kashchiev [9] who suggested its validity
theories, which try to predict nucleation rates quantitafeyond the CNT. Viisaneet al. [6] follow a statistical
tively starting from macroscopic, measurable properties off€chanical approach, linking Eq. (1) with the properties
fluids (for a review, see [1]). However, at present it is notof @& constrained cluster distribution in the grand ensem-
clear that any of these theories is overall more succesJe. Their results indicate that the nucleation theorem
ful than the classical nucleation theory [2]. On the othefolds for arbitrary shaped clusters (the fluctuation does
hand, more fundamental theoretical approaches that aim f§t have to be a drop), for multicomponent clusters,
describe the properties of nucleating clusters on a molec@nd even for clusters of noncritical size. Oxtoby and
ular level have been developed [3,4] in parallel with morekashchiev [8] follow a thermodynamic approach in their
sophisticated experimental techniques [1]. Below, we dedescription of a multicomponent spherical drop nucleus
rive scaling properties for the critical nucleus which are inusing a dividing surface model for the interface. Later
harmony with novel findings from both experimental andin this Letter we use the dividing surface approach to
theoretical studies, and which it is hoped will guide theobtain a formally exact expression fo¥*/¢*Apu for a
phenomenological efforts in a more productive direction. Single-component nucleus in the nonuniform drop model.

Consider the nondimensional ratiy*/g*Au, where Equation (1) greatly restricts the form th#t*/g"Au
W* is the nucleation barrier heighg* is the number ¢an take as a function aAu. To derive the scaling
of molecules in the critical nucleus, andu is the relations, consider the general expression
free energy difference between the vapor, at a given w* _ 1 Fg*, Ap) 2)
saturation ratiaS, and the bulk condensed phase driving g A 2 82
the phase change. In classical nucleation theory (CNTwhere f(g*, Au) gives the departure from CNT. Differ-
and related descriptions, for example, scaling correlationsntiating Eq. (2) using the nucleation theorem gives
based on the capillary drop model [5], it is known d i d i
that W*/géntAp = 1/2 (see also Viisaneret al. [6]). Apn 8 T3¢ =2~ (fg"Aw). ()

) . . “ "

In this Letter we examine the critical nucleus both
in CNT and density functional (DF) theory and show

systematic departure iW"/g"Aun from its classical In the classical theory = 0 and the solution of Eq. (3)

value with increasingAw. We first treat the general ¢, ¢* is a homogeneous function of the form
case of molecular clusters, and then specialize to a

nonuniform spherical drop model of the critical nucleus §cNT () (Ap)™ '(4a)
for comparison with DF theory. Finally, the scaling With C(T) a function temperature alone. Equation (4a)
relations are shown to provide a simple explanation fohas the form required by the capillary drop model of CNT,
reported systematic discrepancies between CNT and Dwhich yields an explicit formula forC(T) through the

To simplify the notation, the argument gf has been
suppressed.

theory, and between CNT and experiment [7]. Kelvin relation (2)
The scaling relations are based on Eg. (1), which has . 32wyl (Ap) (4b)
been called the nucleation theorem [8], gent 3p} Ky
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p; is the molecular number density in the condensedree energy density [11], and can be written as [12]
phase, which is assumed to be uniform in the capillarity 1

approximation, andy.. is the surface tension for a flat P;(r) = P,(p;(r)) + —pl(r)f pi(rw(lr — ') dr'.
interface; curvature effects to the surface tension are not 2

included in the CNT. 9)

In general f is nonzero, and without additional physics Here P,,(r) is the pressure of a uniform hard-sphere fluid
Eq. (3), which is simply an identity between its left- and at the equilibrium densityp,(r), andw(|r — r'|) is the
right-hand sides through the nucleation theorem, canncittractive part of the pairwise intermolecular potential.
be solved. We assume here that each side of Eq. (3)he equilibrium density is obtained from Eq. (9) using
vanishes as in the classical theory, yielding a unique classn iteration method as described by Zeng and Oxtoby [4].
of homogeneous solutions, fgf and for the producfg®,  The nucleation barrier height may then be obtained from
as a generalization of the classical theory P7(r) using [12]

g =CM@w” (52) Wi = —4m fo PP — Pdr. (10)

and
where P is the pressure of the vapor surrounding the
fe* =D(T)(An)" !, (5b)  drop. Finally,gpr is obtained from the density profile,
where the integration constants’(T) and D(T) are X _ [x 2 _
functions only of 7. (It is shown below thatfg* is gpp = 47 o Lpi(r) = poldr. (11)

related to the superficial density [8].) Although the Both ¢* and gi represent the excess number of

homogeneity ansatz leading to Egs. () is IOhySICaIIymolecules present in the volume over the number present
rea;ongble,' we cannot prove It in geperal and b.asﬁrior to cluster formation and are independent of the
Its Just|f_|cat|on on agreement with experiment and Wlthchoice of dividing surface (see below). This definition
calculations that follow. A reformulation of the ansatz differs from the capillary drop model. where the total

in the nonuniform drop model is described following umber of moleculege” resent within the spherical
Eq. (13) below. Classical nucleation theory is recoverecgOundary defined bysfr?gf:)riﬁcal radius is used [53].

for D(T) = 0. Comparison of Egs. (4a) and (Sa) shows The scaling relations, Eqgs. (6)—(8), are demonstrated

that m/order to have™/genr — 1 asAp — O we must o0 through comparisons with results obtained from DF
haveC'(T) = C(T) or calculations for the Lennard-Jones fluid model of Ref. [4].
. 327yl 5 5 The abscissas of Figs. 1 and 2 contain the ratio of actual
= 3p2 (Ap)” =C(T)(Ap), 6 1o equilibrium vapor fugacities,f/fo = exp(Au/kT),
where f/f, approaches in the dilute vapor limit. Fig-
suggesting that the Kelvin relation [Eq. (4b)] has validity yre 1 shows the linear dependence betwgeand A x>
beyond the capillary drop model of the classical theory. predicted from Eq. (5a) at several different temperatures.
Equations (2) and (5b) have the interesting conseS|opes obtained from the DF calculations (lines in Fig. 1)
quence that the displacement between barrier heights Wre in good agreement with the predicted values from
the classical and present theories is a function onlf,of  Eq. (6). Table | compares the barrier heights in the clas-
1 sical and DF theories at fixed temperature. Note, in con-
W' = Wiyt = W' — —g"Au = —D(T). (7) formity with Eq. (7), that the displacements, given in
2 column 5, vary by only a few percent while the bar-

Combining Eqgs. (6) and (7) gives rier heights themselves vary over an order of magni-
W 1 D(T) tude. From the average displacement we obifi) =
— — ——=(Ap) (8) 19.8kT at this temperature. Substitution D7), deter-

grAu 2 (1) mined as in Table | from the average barrier height dis-

showing recovery of CNT along the coexistence curveplacement at each temperature, and’), from Eq. (6),
Ap =0, and quadratic dependence in the departurénto Eq. (8) gives the results shown in Fig. 2. There are
from CNT with increasingAw. Note that whileC(T)  no adjustable parameters in this comparison as the only
is determined by Eq. (6), the functioP(T) must be unknown parameter contributing to the slapéT) is ob-
obtained by a separate, model-dependent, calculation &sined from the DF calculations.
now described. To conclude the treatment of the spherical drop nucleus,

In the DF theory of vapor-liquid nucleation [10] the we derive a formally exact expression fav*/g*Au
nucleus is modeled as a nonuniform spherical drép:  using dividing surface arguments [14]. These methods
is calculated from the grand potential, which can beyield, as the first equality in Eq. (12) below, an equation
expressed as an integral over the tangential component eimilar to Eq. (10) but in terms of the normal component
the pressure tensdty. The latter is equal to minus the of the pressure tensdty. [Adding the two expressions
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FIG. 1. Density functional results fog* (markers) and com- FIG. 2. Density functional results foW*/g*Au (markers)

parison with scaling (lines) from Eq. (5a). Temperatures areand comparison with scaling (lines) from Eq. (8). Tempera-

given in reduced unit&7 /e, wheree is the characteristic en- tures are as reported in Fig. 1. DF results at each temperature

ergy for the Lennard-Jones system of Ref.[4]. are for the same conditions as in Fig. 1. Horizontal lines are
the prediction of classical nucleation theory.

yields a generalization of the Gibbs relation " as

a volume integral ovePy(r) — Pr(r)] For the choice \yheren} divided by4xR? is the superficial density and

that the d|V|d|ng_ surface is placed at the radiRs= ny = 47R3/3 times the vapor density [8]. [In confor-

R;, where R, defines the surface of tension [2,14], themity with the third equality in Eq. (12), we have not

methods described in Ref. [14] furnish the second equality,cjuded the displaced vapor componerjt] Thus we

in Eq. (12), obtainW* = n; Au/2, highlighting the importance at;,
while the equimolecular dividing surfacR, provides a
very good approximation for the classical radiis[15].

3 The equality D(T) = ngAu/2 from Egs. (7) and (13)

2W* = 477[ r’[Pn(r) — Poldr
0

Rs 4R . . ;
= 477[ r2(P® — Po)dr = UL PIA provides a physical interpretation for the departure from
0 3 CNT in terms of the superficial density.
=njAu, (12) The homogeneity ansatz can be simply reformulated in

which converts the integrand to a step function equal td€'Ms ©f the equimolecular dividing surface as follows:
P® — P, for r < R,, whereP“ is the interior pressure at (_Zo_nS|der for simplicity an mcompressm_)l'e nucleu§ in the
the center of the drop, and equal to zerofor R,. The lImit of low vapor density. The condition” = gcr
third equality, which assumes incompressibility and low{fom EQ. (6) implies thak, = r* because:s vanishes at
vapor density, relates the change in chemical potential, the

bulk interior phase density; = p;(0), and the difference TABLE I. Critical nucleus properties a = 0.8¢/k, where

i.” pressure at the C(_enter and outside OT the drop. _From ths? is the characteristic energy for the Lennard-Jones system of
first and last terms in Eq. (12) we obtain the solution Ref. [4] andk is the Boltzmann constant. Energids. and

w* 1 nj 1 ne " W* are in units ofk7 .
g Au 2 g* 2 * (13) Ap g Wenr Wpr Wenr-Wor
where n; is defined as the number of molecules con-0-607 562.6 170.7 151.0 19.7

tained within the volume bounded by the surface of ten-0-863 200.0 86.3 66.0 20.3

sion for uniform interior density equal te;. The second 1.089 100.4 54.7 34.6 20.1
. * # * * 1.362 50.9 34.7 15.6 19.1
equality of Eq. (13) follows fromg™ = n; + ng — ny,
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pressureP® to have the same value in the capillary andand in part by the Environmental Sciences Division of
nonuniform drop models [Eq. (12)], this equality of radii the United State Department of Energy (DOE) as part of
and the generalized Laplace relation [14] requirze=  the Atmospheric Chemistry Program, and was performed
ve + (R./2)dy./dR., where y, is the surface tension under the auspices of DOE under Contract No. DE-AC02-
at the equimolecular dividing surface. This condition is76CH00016. A.L. thanks David Oxtoby for discussions
equivalent to homogeneity because the converse, leadirgg the University of Chicago, where most of this work
to equality ofg* and gcnr as required by Eq. (6), also was performed, and acknowledges the Academy of Fin-
applies. The pair of conditiony, = y. anddy./dR., = land and the Petroleum Research Fund of the American
0, used in constructing the working formulas of CNT [2] Chemical Society for financial support.
is seen to be a special case of the present theory. This
reformulation provides context for the homogeneity ansatz
used to separate Eq. (3) and can be used as an alternate
basis on which to develop the present theory.

In addition to providing an excellent description of the
DF results, the scaling theorems [Eqgs. (6)—(8)] are sup-[1] A. Laaksonen, V. Talanquer, and D.W. Oxtoby, Annu.
ported by experiment. Each of the factorsWi/g*Au Rev. Phys. Chenv6, 489 (1995).
is subject to measurement [6]. Rate plots df/vs In(S) [2] F.F. Abraham,Homogeneous Nucleation Theofjca-
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. . [5] R. McGraw, J. Chem. Phyg5, 5514 (1981); B. N. Hale,
dIn(7)/d In(S), using the nucleation theorem [6,7]. An- in Lecture notes in Physicgdited by P.E. Wagner and

other observation is that the curves fofhtend to be G. Vali (Springer-Verlag, New York, 1988), Vols. 309,
uniformly displaced vertically with respect to each other 323.

in such comparisons. Specifically, the ratifisvt/Jexp [6] Y. Viisanen, R. Strey, and H. Reiss, J. Chem. P8,
and Jent/JpE, While dependent on the temperature, are 4680 (1993); R. Strey and Y. Viisanen, J. Chem. Pi9gs.

only weakly dependent oA [7]. The scaling theorems 4693 (1993).
provide a simple explanation for these observations. In[7] R.M. Nyquist, V. Talanquer, and D. W. Oxtoby, J. Chem.
the first case, the equality* = génr from Eq. (6) jus- Phys.103 1175 (1995).

tifies the observation that CNT is an excellent predictor [8] ?6\(% ((l)gézg’y and D. Kashchiev, J. Chem. Phyk0q
of the number of molecules in the critical nucleus. In e
the second case, the constant displacemeWt’iffrom its [9] D. Kashchiev, J. Chem. Phys6, 5098 (1982).

: . . . 10] D.W. Oxtoby and R. Evans, J. Chem. Phg8, 7521
classical value [Eq. (7)] implies a constant dlsplacemeni ] (1988). Xtoy v -

in In(J) = In(K) — W*/kT. (Differences in the loga- [11] R. Lovett and M. Baus, Physica (Amsterdad4A, 93
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discrepancies observed between CNT and experiment cftB8] The distinction betweeng* and genr (see Refs. [6]
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