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Roughening Transition in a One-Dimensional Growth Process
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A class of nonequilibrium models with short-range interactions and sequential updates is presented.
The models describe one-dimensional growth processes which display a roughening transition between
a smooth and a rough phase. This transition is accompanied by spontaneous symmetry breaking, which
is described by an order parameter whose dynamics is nonconserving. Some aspects of models in
this class are related to directed percolatior ir- 1 dimensions, although unlike directed percolation
the models have no absorbing states. Scaling relations are derived and compared with Monte Carlo
simulations.

PACS numbers: 64.60.Ak, 05.70.Fh, 05.70.Jk, 05.70.Ln

The morphology of growing interfaces has attractedated or annihilated, except at the boundaries), and the
much interest in recent years [1]. Many growth processeexistence ofopenboundaries (two end points) at which
of two-dimensional surfaces exhibit a roughening transithe dynamics is different from that of the rest of the
tion, from a smooth phase with finite width to a rough onesystem. These two features create favorable conditions
with diverging width. A question of interest is whether a for SSB. The conserved dynamics slows down the evo-
one-dimensional (1D) growing interface with short-rangelution of the system; moreover, flips between the bro-
interactions and unbounded noise can exhibit a rougherken symmetry phase to another can originate only at
ing transition [2]. It is well known that in thermal equi- the two boundary points, where the order parameter is
librium no such phase transition can take place as 1Mot conserved. Simple attempts to modify the model
interfaces are always rough. Growth processes far frorsuch that either one or both of these features are elimi-
equilibrium are, however, less restrictive, and the questiomated results in symmetric steady states with no SSB. It
of whether they are capable of exhibiting a rougheningvould therefore be of interest to examine the possibil-
transition in 1D is more subtle. Most growth processesity of SSB in 1D systems under more general conditions,
such as those described by the Kardar-Parisi-Zhang (KPZ)amely, in homogeneous systems with periodic bound-
equation [3], are always rough in 1D. A class of 1D mod-ary conditions and order parameters with nonconserving
els, which have a maximal velocity by which the upper-dynamics.
most point of the surface can propagate, has been shownFinally, phase transitions in homogeneous nonequilib-
to display a roughening transition [4,5]. The existence ofrium 1D systems have usually been observed in the past in
a maximal velocity in these models is due to the use obystems which have absorbing states (a set of states from
parallel updates, and the smooth phase disappears if sethich they system cannot escape). The canonical exam-
quential (continuous time) updates are used. Sequentigle is the “dry” state below the percolation threshold in
updates are a more adequate description of systems whediected percolation models [9—-11]. Thus it is of interest
different particles are not exactly synchronized. The questo find 1D models with no absorbing states that display a
tion of whether a sequential update growth process is cghase transition.
pable of exhibiting a transition from a smooth to a rough In this Letter we present a class of nonequilibrium
phase is still open. models with short-range interactions and sequential up-

A related and more general question is that of spondates, which addresses the three questions posed above:
taneous symmetry breaking (SSB) and long-range ordahe models exhibit a robust 1D transition which implies
in 1D systems [6]. Recently a nonequilibrium 1D modelboth the existence of a roughening transition and SSB
with short-range interactions and unbounded noise whicin 1D. The dynamics is associated with a nonconserved
exhibits SSB in the thermodynamic limit was presentecorder parameter in a homogeneous system with periodic
[7,8]. The model belongs to a class of driven diffusiveboundary conditions. The models supply a local mecha-
systems, in which charges of two kinds are injected ahism for eliminating islands of minority phases generated
both ends of a 1D lattice and are biased to move in opby fluctuations in the bulk of the majority phase. We de-
posite directions. The microscopic rules are symmetrigive some of the scaling properties of a particular model in
under space and charge inversion. However, this synthis class which can be related to directed percolation [9—
metry is broken in the steady state of the system wheré&l]. However, unlike directed percolation, the model has
the currents of the two charge species are different. Imo absorbing states (to be discussed below). The scaling
this model SSB is a result of theonserveddynamics predictions are compared to Monte Carlo simulation re-
of the order parameter in the bulk (charges are not cresults.
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(a) Model description—The class of models is most n,
simply introduced in the language of interface growth
[12], in which both adsorption and desorption processes (&) n,
take place. In the present models, desorption may take Iy
place only at the edge of a plateau. For concreteness, L | [
we study two particular models in this class, (a) a
restricted solid on solid (RSOS) version that may also
be considered in a charged particle representation, and
(b) an unrestricted model that may be related to directed
percolation. Both models are on a 1D lattice with periodic
boundary conditions and are defined as follows: Adbe

(b)

o 0 + 0 + -

. . . o FIG. 1. (a) Typical configuration of the interfaces; is the
the (integer) height of the interface at site = 1,...N.  faction of sites at heighk above the minimal height in the
The interface evolves by choosing a siteat random  configuration (herei, — n; = =, n, — ). The average island

and carrying out one of the two following processes: (a)kize grown on top of levek is /. (b) Mapping of the
adsorption of an atom configuration of (a) to the charged particle representation, along
. . with a site coloring, as described in text.
h; — h; + 1 with probability g, Q)

and (b) a desorption of atoms from the edge of a step
. . . for g < g, is illustrated in Fig. 2. It is seen that the
hj — min(h;, h;+1) with probability (1 — ¢)/2,  (2) islar?d shqrinks, ensuring the stgbility of the smooth phase.
This behavior is typical of islands of all sizes, except
hi — min(h;, h;+1) with probability (1 — ¢)/2.  (3)  the very largest (i.e., a complete layer). The rule that
In the RSOS version, the restriction no holes can be formed in a completed layed + +
in the RSOS version), preventing it from dividing into
lhi = hinl =1 (4) shrinking islands, is essential for obtaining the smooth
is imposed at all sites. The RSOS version may be viewe@hase. To demonstrate the existence of the roughening
as a driven diffusion model of two oppositely chargedtransition, we carried out Monte Carlo simulations of
types of particles. The charges both models. In this Letter we present some of the
. results obtained in this study. A more detailed account
Ciitt = hivy = hi € {=1,0,+1} ®) Wil be published elsewhere [13]. The phase transition
are bond variables and represent a change of height beakes place a. = 0.189 = 0.002 for the RSOS model
tween adjacent interface sites (see Fig. 1). In this repreandg. = 0.233 = 0.001 for the unrestricted model. The
sentation, the dynamical rules (1)—(3) correspond to raninterface width is defined by the standard deviation of the
domly selecting two neighboring bonds and performingheight distributionw = [N~'3.(h; — N™'3Y; hi)*]"/2.
the following processes with probabilities as indicated onWe find that starting from a flat interfacey rises as

the arrows: w ~ X/ for short times, saturating for largatw ~ NX
where N is the lattice size. Aty > ¢., the numerical

0+ % +0 00 % - results ar36 gon;istgnt with the KPZ exponents ¥3F %
%l-q)/Z 1-q and z = 3, indicating a rough interface. Belowy,, w

(6)  saturates at a finite value independentNpfshowing that
q q the phase is smooth. The critical behaviorgat ¢,
-0 %; 0- -+ —> 00 shown in Fig. 3, isw ~ In(N). In the following we
-q)/2 discuss the symmetry breaking which takes place;fer
q.. We also discuss the relation to directed percolation
In both RSOS and unrestricted models, wigga small, and the critical behavior neat.
smooth phase is maintained. In this phase the interface (b) Spontaneous symmetry breakirgTo demonstrate
displays a small concentration of short-lived islands, andome of the model’s properties, it is convenient to con-
its average velocityv is zero in the thermodynamic sider the RSOS model in the charged particle repre-
limit. As q increases, adsorption increases and typicasentation [Eq. (6), Fig. 1]. Ay < ¢., the charges are
islands grow until, above a critical valug., islands arranged as closely bound dipoles. Atg > ¢., the
merge and full new layers are completed, giving thedipoles become unbound, and the fluctuations in the to-
interface a finite growth velocity. Thus, wheris small, tal charge, measured over a distance of ofdediverge
a local mechanism that eliminates islands is present irwith N. Thus the transition is manifested in correlations
the model:an island is formed with boundaries that arebetween charged particles rather than in their density.
biased to move towards each other (due to desorptiomhe symmetry breaking which takes place in this model
from the island edges). The evolution of a large islands best seen by introducing a coloring scheme by which
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g oring. Under the model dynamics, any configuration of
charges and coloring can evolve to any other allowed con-
figuration of charges and coloring. Thus the model has no
absorbing states. However, @t< ¢, a typical configu-
ration displays unequal concentrations of the two colors.
As the system evolves the configurations flip between ma-
jority colors in a time scale which was found to grow
exponentially with the system size [13]. Thus, though
FIG. 2. Monte Carlo simulation of the RSOS model for a the dynamical rules are symmetric with respect to the site
system of size 600 a§ = 0.130 whereg, = 0.189 = 0.002.  colors, the system spontaneously selects one of two colors
Each configuration is a row of pixels, with sites at even andas a majority color, breaking the symmetry. The system
odd heights represented by black and white pixels, respectivelyn the phase space of charge configurations and colorings

Configurations at intervals of 7 moves per site (sweeps) ar ; . ; L
shown (time advances downwards) up to 2100 sweeps. At a?S ergodic at any finite size, but becomes nonergodic in

early time, a large island of size 400 is introduced. The islano{he thermodynamlc limit Whgq < g To _qu"’!m'fy this
shrinks and disappears, illustrating the mechanism that ensur&ymmetry breaking, we define a magnetizationlike order
long-ranged order ay < g.. Note that small islands and parameter (valid for both the RSOS and unrestricted mod-
islands within islands are continually generated by fluctuationse|s)
and are washed away.

N

1
M = N;(_l)h’} (7)

each of the sites between the charged particles is Colyhich can be envisaged by considering the two colors as
ored in one of the two colors, such that the two sﬂes:upn and “down” spins. The order parameter is clearly

adjacent to a- or — particle have different colors, and 6t conserved by the dynamical rules. In the smooth
the two sites adjacent to a O particle have the same CO"Hhase(q < q.),{M) # 0in the thermodynamic limit. On
[Fig. 1(b)]. Every move in the dynamics corresponds to gne other hand, in the rough pha@é) = 0. Monte Carlo

local rearrangement of the charged particles and site cokjmylations (Fig. 3) show that near the phase transition,
for both models,

05 (M) ~ €, 6 =055+ 005, ©)

wheree = ¢, — g.

(c) Relation to directed percolationr-Some features
of the unrestrictedmodel may be related to a directed
percolation (DP) model [9—11], allowing a derivation of
several scaling properties. The occupation of the lowest
exposed level 7§y in Fig. 1(a)] corresponds to the wet
or percolating sites. The nonpercolating or dry sites are
the sites where higher levels are occupied. A wet region
may become dry at both its edges and bulk sites, while a
dry region may shrink only at the edges. This defines a
contact process [14], which is a sequential updated version
» 1 of a DP model [10]. The percolating phase corresponds to
-5 \ 0.8 the smooth phase in the model obtained at ¢.. Thus,

(© X (d) the occupation of the lowest level should vanish at the
1 3 transition with the exponeng characterizing the critical

behavior of the DP wet phase

FIG. 3. Monte Carlo simulation results for the unrestricted X ~
growth model. The critical behavior of a quantify ~ (¢ — no ~ €, Xo=p~028. )
q.)* is estimated by finite size scaling, measurfgs systems The front velocity forg > ¢, may be related to the
of sizeN at the critical pointy = g, and usingF(N) ~ N*/*+,  Jifetime of typical wet islands below the percolation
where v, =~ 1.10 is the critical exponent associated with the threshold. These islands have a lifetime which diverges

divergence of the correlation length [see Sec. (c)]. Systems g : : .
sizesN = 2" m = 3.....11 were studied ay — g, — 0.233 Lt the percolation threshold, with the critical exponept

with 22 ~ 1.7 X 107 moves per site. (a) Order paramekér of the DP coherence time [9]. The time to complete a
(b) Density of exposed sites on the lowest exposed leygl, new layer is the time it takes for its missing regions
and the next levek;. The bold lines have the slopes expected(percolation wet sites) to be covered by adsorption (dry

from the scaling arguments [Egs. (9) and (11)]. (c) Interfaceyp).  Thus the velocity is proportional to the inverse of
velocity v. The bold line has the slope expected from thethe island lifetime:
scaling arguments [Eqg. (10)]. (d) Interface widthsuggesting )

w ~ In(N) (note that this graph is semilogarithmic). v~ (—€), y=vp =173. (10)
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These exponents are in good agreement with the valuge find out whether other exponents, suchdaieqg. (8)],
measured by Monte Carlo simulationg,= 0.29 = 0.03 may also be related to the DP problem. The models
andy = 1.7 = 0.1, as shown in Fig. 3. For the RSOS are easily generalized to higher dimensions, where the
model, there is no direct mapping to DP, since lay-mapping to directed percolation and the scaling arguments
ers grown on top of a dry island affect its evolution. are expected to apply. It would be of interest to construct
Monte Carlo simulations and diagonalization of the time-a coarse-grained field theory [3,15] that describes the
evolution operator of small system® < 12) [11,13] present class of models. For certain growth models
suggest that both RSOS and unrestricted models have timeappings exist to the problem of directed polymers in a
same exponents, and therefore belong to the same univeendom medium [1]. It would be important to see whether
sality class. such a mapping exists in the present case, and if so what
We now present a simple scaling argument for thds the analog of the phase transition.
behavior ofn;, the density of sites at height above We thank B. Derrida, E. Domany, G. Grinstein, C.
the lowest exposed level. Consider first the lowest exdayaparkash, S. Sandow, and D. Wolf for helpful discus-
posed levelk = 0. According to the DP picture, there sions. This work was supported by the Minerva Founda-
are two length scales in the problem: the average sizgon, Munich. M.R.E. is a Royal Society University Re-
of the dry islands,/y, which diverges at the transition search Fellow.
asly ~ € # [11], and the transverse correlation length
&, ~ e 7+ with v, = 1.10 [11]. The two length scales
are related, for a system of sikk by the finite size scaling
relationly ~ e A f(Ne’*), wheref is a function satisfy-
ing f(s) ~ s#/7+ fors — 0. Similarly, ny ~ efg(Ne”")
with g(s) ~ s~#/7+ for s — 0. At criticality, one there-
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