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We investigate the properties of power spectra of a two-mode laser and predict that universal re
among the peaks of the power and noise spectra for different modes but the same frequency h
deterministic and stochastic perturbations. These results are confirmed experimentally.

PACS numbers: 42.50.Ne, 42.55.Rz
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In recent studies on multimode solid state free-runn
lasers (i.e., in the absence of either mode or ph
locking), it has appeared that the peaks of the po
spectra verify remarkable relations [1]. The purpose
this Letter is to present a study of the two-mode c
for which additional and more explicit results can
obtained. We also present experimental results wh
confirm the theoretical analysis.

Multimode free-running solid-state lasers can be
scribed by the Tang, Statz, and deMars rate equations
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which couple the intensity of theN modesIn to the space
average of the population inversionz0 and the population
gratingszn. The incoherent pumping is represented
w $ 1, the gain of moden relative to the gain of the firs
mode isgn # 1, and e2 is the photon lifetime divided
by the atomic inversion lifetime. In agreement wi
experimental data [3], we have assumed thate is mode
independent.

The essential feature which will be exploited in th
Letter is thate is a small parameter with typical value
in the range1022 to 1023. In a previous paper [1], we
have shown that the smallness ofe can be used to deriv
universal relations for the power spectrum of such las
What makes this derivation possible is that the lin
stability analysis around the steady state is governed
complex eigenvalues with different scaling for the real a
imaginary parts. The imaginary parts, which determ
the oscillation frequenciesVj , are Os1yed while their
real parts, which determine the damping rates, areOs1d.
The main result obtained in [1] is a connection betwe
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the peak of the power spectrumPsIn, Vjd for mode In

at frequencyVj and the peak of the power spectru
PsSI , Vjd for the total intensitySI ;

PN
n­1 In at the same

frequency
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This result holds in the limite ! 0. It involves the
parameterwnmj ­ unj 2 umj , whereunj is the phase of
the nth component of the eigenvector associated with
eigenvaluelj whose imaginary part isVj as shown in
[1]. In a number of situations, the phase difference may
independent of the preparation of the system. In this c
the resulting power spectrum relation becomes univers

In the case of two modes, there are two frequenc
VL , VR and g2 ; g. It can be shown analytically
that w12L ­ p 1 Osed and w12R ­ Osed. This result
indicates that the low frequencyVL is associated with
antiphase dynamics while the relaxation oscillation fr
quencyVR is associated with inphase dynamics. The
fore the power spectra equalities become

PsSI , VRd ­
hq

PsI1, VRd 1

q
PsI2, VRd

i2
,

PsSI , VLd ­
hq

PsI1, VLd 2

q
PsI2, VLd

i2
,

(5)

The universality of these relations stems from the fa
that they relate peaks of different modal intensities atthe
same frequency.Hence they express a relation betwe
different components of the same eigenvector and
therefore be independent of the preparation of the syst

We wish to determine both numerically and experime
tally the extent to which the relations (5) are valid. Th
reason to expect a large domain of validity is that the
lations (5) are derived from a linearized analysis arou
© 1996 The American Physical Society
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TABLE I. Power spectrum normalized toPsSI , VRd for the relaxation towards steady state withe2 ­ 2 3 1025 andw ­ 2.25.
Initial condition: w ­ 2.5. (a) g ­ 0.99. (b) g ­ 0.9. (c) g ­ 0.8.

V
p

PsI1, Vd
p

PsI2, Vd PsSI , Vd PsSI , Vd
numerical calculated

(a) VL 0.1283 0.1291 , 0.0001 , 0.0001
VR 0.5202 0.4798 1 1.0000

(b) VL 0.4200 0.5420 0.0149 0.0149
VR 0.7124 0.2876 1 1.0000

(c) VL 1.0105 1.6474 0.4057 0.4056
VR 0.9184 0.0816 1 1.0000
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the steady state for the variableszn, z0, and Jn defined
by zn ­ zns 1 ezn, z0 ­ z0s 1 ez0, In ­ Ins 1 Jn, and
t ­ tye where the subscripts stands for steady stat
[4,5]. It follows from this scaling that perturbations whic
result in the addition of a termOsed in Eqs. (1)–(2)
and a termOse2d in Eq. (3) will not affect the relations
(5). This means that correctionOse2d to z0 and zn and
correctionsOsed to In do not affect the relations (5).

Tests have been performed to assess the validity o
relations (5). The first test is a study of the relaxat
towards a steady state [6,7]. The laser is initially
a steady state corresponding tow ­ 2.5. The pump
parameter is abruptly reduced to 2.25 and the trans
relaxation towards the new steady state is recor
and spectrum analyzed. The results of this numer
integration are summarized in Table I and show
excellent agreement with the relations (5): The differe
between the last two columns is indeed less thane.

The second test is the influence of noise. We cons
a two-mode laser in the steady state and introduce
external source of noise. We added to the right hand
of the modal intensity equation (3) a source term of
form aInsz std where a ­ 0.05 is the noise amplitude
Ins is the steady intensity of thenth modesn ­ 1 or 2d,
and z std is a sequence of random numbers uniform
distributed on the intervalf21, 1g. The time evolution is
spectrum analyzed and the result is displayed in Table
Here again, the agreement between the numerical v
of PsSI, Vd and the result obtained using the relatio
(5) is excellent, with a discrepancy which is always low
thane.
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An experimental verification of the power spectru
relation (5) has been carried out by using a microch
LiNdP4O12 (LNP) laser oscillating in the two-mode
regime. The LNP laser consists of a 1 mm thick crys
with dielectric mirrors coated on both surfaces and
is pumped by an Ar laser. The oscillation waveleng
was 1.32mm and the TEM00 mode lasing threshold was
250–260 mW depending on the pump position on t
crystal. By changing the pump position, the pump pow
for the onset of the second cw lasing mode (and theref
g) was changed resulting from a slight change in t
cavity length (e.g., crystal thickness). We tested t
relations (5) at two different pump positions. The seco
thresholdwc was 1.185 and 1.260, respectively.

An example of power spectra averaged over a lo
period of time for modal and total intensities of the fre
running LNP laser driven by “white” noise is shown i
Fig. 1, where the pump power isw ­ 3.27 and wc ­
1.26. Results obtained from different pump and gain a
summarized in Table III, together with calculated valu
based on the measured power spectral intensities u
(5). Experimental results are found to verify the univers
relation (5) of two-mode laser power spectra excellently

Thus we have shown analytically, numerically, an
experimentally that the relations (5) have a large dom
of applicability. Additional tests have been made wi
gain and loss modulation. They also verify the relatio
(5) provided that the modulation amplitude is less than
equal toe2.

The simplicity of the two-mode case is related to th
existence of only two internal frequencies,VL and VR ,
TABLE II. Noise spectrum normalized toPsSI, VRd with e2 ­ 2 3 1025, w ­ 2.25 and noise level5 3 1022. (a) g ­ 0.99.
(b) g ­ 0.9. (c) g ­ 0.8.

V
p

PsI1, Vd
p

PsI2, Vd PsSI , Vd PsSI , Vd
numerical calculated

(a) VL 1.4238 1.4714 0.00295 0.00226
VR 0.5285 0.4728 1 1.0026

(b) VL 1.4633 1.8197 0.1287 0.1270
VR 0.7212 0.2804 1 1.0032

(c) VL 0.4760 0.7538 0.0781 0.0772
VR 0.9248 0.0756 1 1.0008
2695
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FIG. 1. Two-mode LNP laser power spectra in the free-running condition. (a) Power spectrum for modeI1. (a′) EnlargedI1
spectrum. (b) Power spectrum for modeI2. (b′) EnlargedI2 spectrum. (c) Power spectrum for the total intensityI1 1 I2, where
the vertical scale is twice that of (a) and (b). The horizontal scale is 100 kHz/div.
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In the case of three or more nondegenerate mo
there is practically no analytic information which ca
be obtained. Using the results of [4], one finds that
N ­ 2 additional relations between the power spectra
2696
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be derived analytically. In particular, we have

PsI2, VRdyPsI1, VRd ­ S2
1,

PsI2, VLdyPsI1, VLd ­ S2
2, (6)
S6 ­
sg 2 1d s4 2 gz2d 6

p
fsg 2 1d s4 2 gz2dg2 1 16f1 2 gsz 2 1dg2sz 2 1d sgz 2 1d

4gsz 2 1d f1 2 gsz 2 1dg
(7)
TABLE III. Observed noise spectrum normalized toPsSI, VRd of free-running two-mode LNP laser. (a)w ­ 1.6, wc ­ 1.18.
(b) w ­ 1.55, wc ­ 1.26. (c) w ­ 3.27, wc1.26.

V
p

PsI1, Vd
p

PsI2, Vd PsSI , Vd PsSI , Vd
numerical calculated

(a) VL 0.22 0.26 , 0.01 , 0.01
VR 0.56 0.44 1 1.00

(b) VL 0.26 0.27 , 0.01 , 0.01
VR 0.54 0.43 1 0.94

(c) VL 0.16 0.16 , 0.01 , 0.01
VR 0.55 0.46 1 1.02
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with g ; g2 and z is the steady state value o
z0. Therefore, the ratiosPsI2, VRdyPsI1, VRd and
PsI1, VLdyPsI2, VLd increase with w at constant g.
For a constant pumpw, there is a critical value of the
gain gc below which the laser is single mode. Th
three peaksPsI1, VLd, PsI2, VRd, and PsI2, VLd van-
ish for g ­ gc. However, the analytical expressio
(7) implies 9y4 , PsI2, VLdyPsI1, VLd , 4 in the limit
0 , g 2 gc ! 0. For instance,gc . 0.76 for w ­
2.25, and Table I givesPsI2, VLdyPsI1, VLd ­ 2.6578
for g ­ 0.8.

An essential property of the relations (5) is that they
independent of the parameters of the system. In cont
the relations (6) require an explicit knowledge of all t
parameters. We have verified that the relations (6) ar
agreement with the numerical results presented in Tabl
and II.
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