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Classical Chaos as an Environment for Dissipation
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We study an isolated three-dimensional system composed of a slow one-freedom system of interest
interacting with a soft-chaotic environment. We present numerical evidence that the averaged motion

of the slow system is dissipative, though not exactly governed by the Langevin equation. An analytical
reasoning is proposed to explain the results, circumventing the unsufficiency of the adiabatic hypothesis.

PACS numbers: 05.45.+b, 03.65.Ca, 05.40.+j, 46.10.+z

This Letter examines the question of modeling dissi-using a representation of the chaotic system in terms of
pation by coupling of a macroscopic system to a fastthe eigenfunctions of the corresponding Liouville opera-
low-dimensional, and chaotic environment. This prob-tor [6], we establish a connection between the BR and the
lem was first investigated by Wilkinson [1], who found CL formalisms.
that adiabatic time-dependent chaotic Hamiltonians can be We consider an isolated system governed by the
a source of dissipation. A general adiabatic theory haslamiltonian
been provided by Berry and Robbins (BR) [2], who con-

sidered explicitly a microcanonical ensemble of chaotic H=Hy + H + H, (1)
systems in order to define the averaged dynamics of thehere
macroscopic system. .It was shown thgt,.fora}sufficiently B p? p§ 3 x2\? TN
slow macroscopic motion, the adiabatic invariance of the Hy(x,y, px: py) = B3 + E) + <y ?> + Y
energy surface [3,4] gives rise to a Born-Oppenheimer
reaction force, and the first correction to it is a force Hi(x,z) = yxz,
proportional to the velocity. This force in turn is split p> A
into a so-called “geometric magnetic” and a “determin- H,(z,p;) = 21\/21 + 722 + Bzt

z

istic” friction. The time dependence of the Hamiltonian
presupposes the slow motion keeps its external dynamidgy is the Hamiltonian for the known Nelson poten-
(frozen) while coupled, as stated in BR’s work. This istial, a system which is fairly regular for low ener-
somewhat problematic when we have to define the slowies, E < 0.05 but chaotic for higher onest = 0.3
motion’s energy, whose decrease is stated at last. Fuand mixed for intermediate values [7]. The parameter
ther, once the energy of the slow motion has flown to theu is set equal to 0.1 throughout The property of soft
chaotic system, how long does it stay in it? These quesshaoticity is particularly useful in the present applica-
tions cannot be addressed when we start with an expliction, since we want to compare the behavior of the slow
time dependence on the chaotic Hamiltonian. system’s energy for the two regimes. The dynamical
An alternative way of modeling dissipation was devel-variablez varies slowly forg/M, < 1, if A = 0, or for
oped in the early 1980s by Caldeira and Leggett (CL)A\/M, < 1, if 8 = 0, and therefore can play the role
[5]. In their model, a macroscopic “system of interest” of an adiabatic parameter for the Hamiltonian function
is coupled to a reservoir of harmonic oscillators. Using ah(z) = Hy + H;.
coordinate-coordinate coupling between the macroscopic We first calculate numerically the reaction force pro-
system, here a one-dimensional system whose coordinatieiced by the fast chaotic system on the slow motion.
is namedz, and the reservoir, it was found that the formerGiven an initial point on the phase space of the slow
motion is governed by the classical Langevin equation system, we wish to determine in particular whether its
M2+ pi + 4 - evolution und_er the total Hamiltoniaﬁ_l will increase
' dz or decrease its energy. The fluctuations due to a spe-
provided the set of oscillators has a linear spectrafific choice of initial condition on the chaotic system
distribution of frequencies. As pointed out in [1], this are rubbed out by averaging over thestricted micro-
approach is based on a thermodynamical limit, for thecanonical distribution
number of oscillators tends to infinity. S(E — H)
Our procedure removes the inconvenience of time- p(z,p;) = SE2) 2)
dependent Hamiltonians by constructing a weakly coupled =
universeS + R, an idea borrowed from the CL formal- where the normalizationX(E,z) is the deriva-
ism, whose parts are a system of interest, a slow systetive with respect to energy ofQ(E,z) = [O(E —
S, and its environment, a smooth chaotic sysemBy  H)dxdydp,dp,.
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To generate an initial ensemble numerically, we param-
etrize the energy surface of the fast system with three an-
gles [8]. The volume inside the energy shell of the chaotic
system,(}, is the adiabatic invariant [3]. We can easily
evaluate() for the Nelson potential, because its Hamil-

. . . _ 2 2 _
tonian is a sum of squares, obtainifly = \/:[E

H. + %.-T%. From the relatiof) = const we derive the

3.20e-03

adiabatic approximation for the slow system’s energy share 3.000-03 [
during the evolution of the composed system: . L
H. = y*2*/2p ~ const I N
2.2
which means that—%- is the renormalizing Born- 280003 = . po

Oppenheimer (BO) potentidl, due to coupling. It is . .
. FIG. 1. The energy of the slow motiof,, as a function of
important to note that the BO term does not depend on thf?me is the oscillating curve, while the renormalized energy

state of the fast system, regular or chaotic mightitbe. g = £ — v, is fairly constant on this scale. Total energy
The actual deviation from an adiabatic trajectory lead®.04 sets the Nelson potential in a regular regime.

to higher order corrections. Brown, Ott, and Grebogi have ) )

studied numerically the diffusion behavior of the adiabaticthe renormalized energy.,, we shall consider the prob-

invariant Q (z(¢), p.(1)) [4], another manifestation of the Iem from a different pom_t of view, thereby establishing a

dissipation we are expected to measure for the energy éidge to the bath of oscillators formalism [5]. .

the slow system. We write the set of Hamilton equations for the chaotic
We calculate the mean values of the position andyStem, for the moment not considering the coupling,

momentum of the slow system for 1.8 period of its own!" terms of the Liouville operator for a complex valued

(decoupled) motion. Explicitly, we plo(z(1)), (p,(r))), dynamical variablef

where(:) = [p - dxdy dpx dpy andz(1), p. (1) are exact Hap)=[f.H = H:f=Lf, 3)

solutions of the full Hamiltonian (1) for fixed, and _ o . . .

p., and each initial condition of the chaotic system.and envisage it in connection to the eigenvalue equation

We attribute E, = H,((z),{p.)) to the energy of the for the operator.

slow system andE., = H:((z),{pz)) — V:((z)) to its We shall henceforward use the Hilbert space notion in
renormalized energy. classical mechanics. We start by considering the set of
We set the parametefs= 6e — 3, A = 0, 8 = 4e —  all C* dynamical variables, and the distributions obtained

4, and M, = 100. The period of the decoupled one- by t_he restrict.ion_ of those to thg_ maximal invarignt
dimensional system is of the order of 1000 for theseManifolds: periodic orbits or families of them (tori).
settings, much bigger than the shortest periodic orbif* Measuredu concentrated on the periodic orbits (or
of the Nelson potential, namely/2 7. The method of tori), WI.'[h Dlrag delta_s, can be defined. Notice that the
numerical integration is an implementation of the sixthWandering set is ascribed zero measure.
order simplectic integrator [9], which guarantees that the 1he Hilbert space we consider i8*(R*, du), a
total energy is conserved, a property not shared by thBotation which also defines the inner produgt, g) =
family of Runge-Kutta integrators. lIts variation is less / f 8 du. As discussed in Santilli [6], if the Hamiltonian
than10~7 for the whole evolution.

For E. (z0, p-,) = 0.00287 and the total energ§ = 4003
0.04, so that the Nelson potential is in a regular region,
the slow motion is still periodic. We conclude from Fig. 1
that its energy has been renormalized due to coupling, and
E, remains fairly constant, as expected. E

For the total energye = 0.38, two phase space aver- '
aged trajectories of the slow motion are depicted in the
inset of Fig. 2, showing clearly that its initial energy goes
to the chaotic system. How this energy is carried out by 1603 |-
the chaotic system is shown in Fig. 2. We verify that the
oscillations ofE, are bigger than the renormalizing poten-
tial, also depending on the initial conditian, p., being 0
at an even or odd quadrant. ) ]

These results cannot be understood in light of the adif!G- 2. Renormalized energl;, ((z). (p.)) as a function of

. . - o time. The amplitude of the oscillations is larger than the BO

abatic approximation alone, becau_se if it were thgn th otential. Inset: phase space plots of the averaged slow motion,
energyE,, would decrease monotonically. To explain theinjtial conditions(z, p.) = (+1.5,0.5). Total energy 0.38 sets
departure from a purely or mostly dissipative behavior ofthe Nelson potential in a chaotic regime.

3e-03

2e-03

. g
T2 T 3T/2
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possesses global solutions for any initial condition, theof the periodic orbits. Then, in the chaotic case,
operator —iL is essentially self-adjoint, which means _ Dt _ 2mn
there is a unique extension efiL that is self-adjoint [11]. Punlg. p) = Jalyo) e Xy A = T (5)
Global solutions are guaranteed for the Nelson potential hereT, is the period of the orbityy, ¢ is a parameter
because it is bounded from below. The Hilbert space o I tﬁ' b'tp is its ch tk,' tic f P " d
dynamical variables in whick-iL is self-adjoint contains along this orbit, x,, IS 1S characteristic function, an
a(yy) is a positive weight of the orbit. The form of

L*(R?",dp). In it, we have the associated Hamilton's he eigenfunctions, so simple and quite independent of
equations formally linearized, but by now we have to dea{ gentt ' 'mp d ndep .
he specific potential, hides the complexity of chaotic

with aninfinite set of thems-iLex = Axer, dynamics, contained in the weighigy,) and the Dirac
doi/dt = Loy = iAoy, (4) delta measure. All we need here is that these eigen-

nctions form an orthonormal basis, and the details

f this Hilbert space approach will be published else-

where); are real. We can separate the real and imaginar
duy

parts of ¢r, ¢r = u; + ivy, obtaining —- = — A vy
and L& = ) and &2 = ) To finé[H in this where [10]. ; ; i

i kUk i kU N Recall thatf(x,y, px, py) = x is a dynamical variable.
basis, we must fulfill the relation$u;, Hy] = —Avi  gjnce the se{oi: k = 1,2,..} is an orthonormal basis
and [v;, Hy] = —Aju;. Therefore we can writddy as

Lob, 5 for the dynamical variables, we may write
k
2k 7 (ug + vp).

From the form of Eq. (4), it is clear that, are periodic * ; Cier %A"”" * Brve. ©
with period 1/A;. It follows that the eigenfunctions of where A, and B, are real. The coefficients, are
the Liouville operator are closely related to the periodicdetermined by the usual relati@h, = (x, ¢x).
orbits, in the ergodic case, or with the rational tori, in the We write a formal Hamilton function associated with
integrable case. Each of them resides in a specific invariarihe coupled set of equations
manifold, vanishing outside. Their proportionality to the Ak
characteristic function of an invariant manifold carries the . = 2. 5 (i + v) + v D (Awux + Bivi)z + H,
information about the local variables perpendicular to this | k o o ,
manifold, action variables in the integrable case. The set g¢hich gives an infinite system, linear for Nelson's poten-
eigenfunctions are, in fact, the union of Fourier bases ovei@! Part. Applying the Laplace transform on the perturbed

each periodic orbit. Lety,, k = 1,2,...} be an ordering, €duations fon(r) and (1) and substituting the results
in the Newtonian equation for the slow motion we get

M. + Az + 487> = —y{ZAk[uk(O) coshyt — vi(0) sindgt] + ZBk[Uk(O) COS\,t + uk(O)sinAkt]}

+v22(A%+B%)Ak£‘1( ) ) @)

52+ A2

where £ ~! denotes the inverse Laplace transform ahd
Z(s) is the Laplace transform af(z). .

The first two sums on the right hand side can be _ —iwT
grouped and simplified asy > [Arur(t) + Brvi(r)] = Sx(w) 4Re[0 e Culr)dr, ®)
—vyx4(1), wherex,(r) denotes a particular solution of the ang using the expansiongs + 7) = 3, e T4+ x
decoupled motion. This is a fluctuating force whose avery,*(0) andx(r) = X, e "/ Cr o (0), we get
age over the restricted microcanonical distribution gener- -
ates the BO force. To see this, expand the microcanonicgl () = 4Rer e i@ AT CF 0¥y dr
distribution in a power series of the coupling constant 1 70

_O(E—~Hy —H) _ . dg6(E — Hy — H.)
p 2(7) y 3(0) :

so that (vy(1)) = [ pxdxdydp,dp, = % + o(y?), \l?v);i;[(r;(ih(;rtli;(;??;?nalilﬁalztg)n(;))f ;Tse basis. Therefore we can

=47 > 8(0 — M) IC?
1

where we writeX, = 3(y) to emphasize its dependence

on the coupling constant. The next order nonvanishing 2 o p

term of —y(x4(¢)) is proportional toy* and we will y—f Sx(w)(f sinw(r — t’)z(ﬂ)d;’) do. (9)

neglect it. This is, in fact, a weak coupling limit, also 4m Jo 0

present in the CL formalism when one considers theThe form of this term is in exact agreement with the

perturbation each oscillator of the bath suffers. Caldeira-Leggett treatment of dissipation. But here we
The average of the last term can be written in termdiave a spectral density which depends on the chaotic

of the autocorrelation functiof,(7) = (x,(t + 7)x4(¢)).  motion. In particular, we can show [see Eq. (5) and (9)]

Defining the spectral density [12] that the long periodic orbits in a chaotic system cause
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S, (w) to be nonvanishing for low frequencies, a property
that is in contrast with the linear dependence the spectral
density is assumed to have in [5].

We display in Fig. 3 the numerically calculated (de-
coupled) correlationC,(7) for the total energyE =
0.38. It can be well fitted by the usual correlation
ole % coswot [12], where o? = 1.886, a = 4.17 X
1072, andwg = 0.1966. Using this expressiors, (v) is 8.04003 |
given by

3.08e-03

1 1
a0’ + .
“ ((a)+a)0)2+a2 (a)—wo)2+a2>
Unfortunately, the integral ino cannot be written in

0 T 2T

closed form, as it has an odd integrand, but the evolutioff/S: 4. Renormalized energy., in function of time for a
slow linear oscillator,A = 2¢ — 3, B = 0. Smooth curve

equation we have fofz) can still be handled numerically. optained from Eq. (9) and the other obtained from the av-
Considering the equation fgz) we obtained eraged motion. Total energy is the same as in Fig. 2.
oV The amplitude of variation ofE, is less than the BO
g

M_(Z) + ANz) + 4B(%) + <¥> = F(z), (10) Ppotential.

where F stands for the convolution term depending on
the correlation function (9), we see that for nonzgo
the term in(z) turns out to be a time-dependent potential
for the averaged motion. Its difference fran)® is large
when chaos is present, while tiny when the fast variable
are in a regular regime. It also increases with time an
is the source of enormous oscillations of the average
renormalized energg ., , shown in Fig. 2.
A simplified application of this approach is to consider
A =2 X 1073 andB = 0, a setting that makes the period
of the (degoupled) SIO_W mOt'QFF’l.A'OO _and Ilnearlze_s correlation of the coupled chaotic coordinate.
(10). We integrate this equation |terat|vgly, comparing  this work has been supported by FAPESP (T.0.C.),
the curve for the renormalized enerfy obtained from it CNP d EINEP
: . - . g, an :
with the one obtained from the previous method: coupling
to a microcanonical ensemble of chaotic systems. The
curves are shown in Fig. 4. Besides the good agreement,
attention must be drawn to the amplitude of variation of 1] m. wilkinson, J. Phys. A23, 3603 (1990).
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