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Classical Chaos as an Environment for Dissipation
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We study an isolated three-dimensional system composed of a slow one-freedom system of in
interacting with a soft-chaotic environment. We present numerical evidence that the averaged m
of the slow system is dissipative, though not exactly governed by the Langevin equation. An analy
reasoning is proposed to explain the results, circumventing the unsufficiency of the adiabatic hypoth
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This Letter examines the question of modeling dis
pation by coupling of a macroscopic system to a fa
low-dimensional, and chaotic environment. This pro
lem was first investigated by Wilkinson [1], who foun
that adiabatic time-dependent chaotic Hamiltonians ca
a source of dissipation. A general adiabatic theory
been provided by Berry and Robbins (BR) [2], who co
sidered explicitly a microcanonical ensemble of chao
systems in order to define the averaged dynamics of
macroscopic system. It was shown that, for a sufficien
slow macroscopic motion, the adiabatic invariance of
energy surface [3,4] gives rise to a Born-Oppenheim
reaction force, and the first correction to it is a for
proportional to the velocity. This force in turn is sp
into a so-called “geometric magnetic” and a “determ
istic” friction. The time dependence of the Hamiltonia
presupposes the slow motion keeps its external dyna
(frozen) while coupled, as stated in BR’s work. This
somewhat problematic when we have to define the s
motion’s energy, whose decrease is stated at last.
ther, once the energy of the slow motion has flown to
chaotic system, how long does it stay in it? These qu
tions cannot be addressed when we start with an exp
time dependence on the chaotic Hamiltonian.

An alternative way of modeling dissipation was dev
oped in the early 1980s by Caldeira and Leggett (C
[5]. In their model, a macroscopic “system of intere
is coupled to a reservoir of harmonic oscillators. Usin
coordinate-coordinate coupling between the macrosc
system, here a one-dimensional system whose coord
is namedz, and the reservoir, it was found that the form
motion is governed by the classical Langevin equation

Mz̈ 1 h Ùz 1
≠V
≠z

­ fstd

provided the set of oscillators has a linear spec
distribution of frequencies. As pointed out in [1], th
approach is based on a thermodynamical limit, for
number of oscillators tends to infinity.

Our procedure removes the inconvenience of tim
dependent Hamiltonians by constructing a weakly coup
universeS 1̃ R, an idea borrowed from the CL forma
ism, whose parts are a system of interest, a slow sys
S, and its environment, a smooth chaotic systemR. By
0031-9007y96y76(15)y2690(4)$10.00
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using a representation of the chaotic system in terms
the eigenfunctions of the corresponding Liouville oper
tor [6], we establish a connection between the BR and
CL formalisms.

We consider an isolated system governed by
Hamiltonian

H ­ HN 1 HI 1 Hz , (1)

where

HN sx, y, px , pyd ­
p2

x

2
1

p2
y

2
1

µ
y 2

x2

2

∂2

1
m

2
x2,

HI sx, zd ­ gxz ,

Hzsz, pzd ­
p2

z

2Mz
1

l

2
z2 1 bz4.

HN is the Hamiltonian for the known Nelson poten
tial, a system which is fairly regular for low ener
gies, E & 0.05 but chaotic for higher ones,E * 0.3
and mixed for intermediate values [7]. The parame
m is set equal to 0.1 throughout The property of s
chaoticity is particularly useful in the present applic
tion, since we want to compare the behavior of the sl
system’s energy for the two regimes. The dynami
variablez varies slowly forbyMz ø 1, if l ­ 0, or for
lyMz ø 1, if b * 0, and therefore can play the rol
of an adiabatic parameter for the Hamiltonian functi
hszd ­ HN 1 HI .

We first calculate numerically the reaction force pr
duced by the fast chaotic system on the slow moti
Given an initial point on the phase space of the slo
system, we wish to determine in particular whether
evolution under the total HamiltonianH will increase
or decrease its energy. The fluctuations due to a s
cific choice of initial condition on the chaotic system
are rubbed out by averaging over therestricted micro-
canonical distribution

rsz, pzd ­
dsE 2 Hd

SsE, zd
, (2)

where the normalization SsE, zd is the deriva-
tive with respect to energy ofVsE, zd ­

R
QsE 2

Hd dx dy dpx dpy.
© 1996 The American Physical Society
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To generate an initial ensemble numerically, we para
etrize the energy surface of the fast system with three
gles [8]. The volume inside the energy shell of the chao
system,V, is the adiabatic invariant [3]. We can eas
evaluateV for the Nelson potential, because its Ham

tonian is a sum of squares, obtainingV ­ p2
q

2
m fE 2

Hz 1
g2z2

2m g2. From the relationV ­ const we derive the
adiabatic approximation for the slow system’s energy sh
during the evolution of the composed system:

Hz 2 g2z2y2m ø const,

which means that2g2z2

2m is the renormalizing Born-
Oppenheimer (BO) potentialVr due to coupling. It is
important to note that the BO term does not depend on
state of the fast system, regular or chaotic might it be.

The actual deviation from an adiabatic trajectory lea
to higher order corrections. Brown, Ott, and Grebogi ha
studied numerically the diffusion behavior of the adiaba
invariant Vssszstd, pzstdddd [4], another manifestation of th
dissipation we are expected to measure for the energ
the slow system.

We calculate the mean values of the position a
momentum of the slow system for 1.8 period of its ow
(decoupled) motion. Explicitly, we plotskzstdl, kpzstdld,
wherek?l ­

R
r ? dx dy dpx dpy andzstd, pzstd are exact

solutions of the full Hamiltonian (1) for fixedz0 and
pz0 and each initial condition of the chaotic syste
We attribute Ez ; Hzskzl, kpzld to the energy of the
slow system andEzr ­ Hzskzl, kpzld 2 Vr skzld to its
renormalized energy.

We set the parametersg ­ 6e 2 3, l ­ 0, b ­ 4e 2

4, and Mz ­ 100. The period of the decoupled on
dimensional system is of the order of 1000 for the
settings, much bigger than the shortest periodic o
of the Nelson potential, namely,

p
2 p. The method of

numerical integration is an implementation of the six
order simplectic integrator [9], which guarantees that
total energy is conserved, a property not shared by
family of Runge-Kutta integrators. Its variation is le
than1027 for the whole evolution.

For Ezr sz0, pz0d ­ 0.002 87 and the total energyE ­
0.04, so that the Nelson potential is in a regular regi
the slow motion is still periodic. We conclude from Fig.
that its energy has been renormalized due to coupling,
Ezr remains fairly constant, as expected.

For the total energyE ­ 0.38, two phase space ave
aged trajectories of the slow motion are depicted in
inset of Fig. 2, showing clearly that its initial energy go
to the chaotic system. How this energy is carried out
the chaotic system is shown in Fig. 2. We verify that
oscillations ofEz are bigger than the renormalizing pote
tial, also depending on the initial conditionz0, pz0 being
at an even or odd quadrant.

These results cannot be understood in light of the
abatic approximation alone, because if it were then
energyEzr would decrease monotonically. To explain t
departure from a purely or mostly dissipative behavior
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FIG. 1. The energy of the slow motion,Ez, as a function of
time is the oscillating curve, while the renormalized ener
Ezr ­ Ez 2 Vr is fairly constant on this scale. Total energ
0.04 sets the Nelson potential in a regular regime.

the renormalized energyEzr
, we shall consider the prob

lem from a different point of view, thereby establishing
bridge to the bath of oscillators formalism [5].

We write the set of Hamilton equations for the chao
system, for the moment not considering the coupli
in terms of the Liouville operator for a complex value
dynamical variablef

Ùfsq, pd ­ ff, Hg ­: H : f ­ Lf , (3)

and envisage it in connection to the eigenvalue equa
for the operatorL.

We shall henceforward use the Hilbert space notion
classical mechanics. We start by considering the se
all C` dynamical variables, and the distributions obtain
by the restriction of those to the maximal invaria
manifolds: periodic orbits or families of them (tori
A measuredm concentrated on the periodic orbits (
tori), with Dirac deltas, can be defined. Notice that t
wandering set is ascribed zero measure.

The Hilbert space we consider isL2sR2N , dmd, a
notation which also defines the inner product,kf, gl ­R

f g dm. As discussed in Santilli [6], if the Hamiltonia

FIG. 2. Renormalized energyEzr skzl, kpzld as a function of
time. The amplitude of the oscillations is larger than the B
potential. Inset: phase space plots of the averaged slow mo
initial conditionssz, pzd ­ s61.5, 0.5d. Total energy 0.38 sets
the Nelson potential in a chaotic regime.
2691
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possesses global solutions for any initial condition,
operator 2iL is essentially self-adjoint, which mean
there is a unique extension of2iL that is self-adjoint [11].
Global solutions are guaranteed for the Nelson poten
because it is bounded from below. The Hilbert space
dynamical variables in which2iL is self-adjoint contains
L2sR2N , dmd. In it, we have the associated Hamilton
equations formally linearized, but by now we have to d
with an infinite set of them,2iLwk ­ lkwk,

dwkydt ­ Lwk ­ ilkwk , (4)

wherelk are real. We can separate the real and imagin
parts of wk, wk ­ uk 1 iyk, obtaining duk

dt ­ 2lkyk

and dyk

dt ­ lkuk and dyk

dt ­ lkuk . To find HN in this
basis, we must fulfill the relationsful , HN g ­ 2llyl

and fyl , HN g ­ 2llul. Therefore we can writeHN asP
k

lk

2 su2
k 1 y

2
k d.

From the form of Eq. (4), it is clear thatwk are periodic
with period 1ylk. It follows that the eigenfunctions o
the Liouville operator are closely related to the period
orbits, in the ergodic case, or with the rational tori, in t
integrable case. Each of them resides in a specific invar
manifold, vanishing outside. Their proportionality to th
characteristic function of an invariant manifold carries t
information about the local variables perpendicular to t
manifold, action variables in the integrable case. The se
eigenfunctions are, in fact, the union of Fourier bases o
each periodic orbit. Lethgk , k ­ 1, 2, . . .j be an ordering
nd
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e
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of the periodic orbits. Then, in the chaotic case,

wknsq, pd ­
1p

asgkd
eilkntxgk , lkn ­

2pn
Tk

, (5)

whereTk is the period of the orbitgk, t is a parameter
along this orbit,xgk is its characteristic function, an
asgkd is a positive weight of the orbit. The form o
the eigenfunctions, so simple and quite independen
the specific potential, hides the complexity of chao
dynamics, contained in the weightsasgkd and the Dirac
delta measure. All we need here is that these eig
functions form an orthonormal basis, and the deta
of this Hilbert space approach will be published els
where [10].

Recall thatfsx, y, px , pyd ­ x is a dynamical variable
Since the sethwk: k ­ 1, 2, . . .j is an orthonormal basis
for the dynamical variables, we may write

x ­
X

k

Ckwk ­
X

k

Akuk 1 Bkyk , (6)

where Ak and Bk are real. The coefficientsCk are
determined by the usual relationCk ­ kx, wkl.

We write a formal Hamilton function associated wi
the coupled set of equations

H ­
X

k

lk

2
su2

k 1 y2
k d 1 g

X
k

sAkuk 1 Bkykdz 1 Hz ,

which gives an infinite system, linear for Nelson’s pote
tial part. Applying the Laplace transform on the perturb
equations forukstd and ykstd and substituting the result
in the Newtonian equation for the slow motion we get
Mzz̈ 1 lz 1 4bz3 ­ 2g

ΩX
Akfuks0d coslkt 2 yks0d sinlktg 1

X
Bkfyks0d coslkt 1 uks0d sinlktg

æ
1 g2

X
sA2

k 1 B2
kdlkL 21

√
z̃ssd

s2 1 l
2
k

!
, (7)
an

e
e

otic
)]
se
where L 21 denotes the inverse Laplace transform a
z̃ssd is the Laplace transform ofzstd.

The first two sums on the right hand side can
grouped and simplified as2g

P
fAkukstd 1 Bkykstdg ­

2gxdstd, wherexdstd denotes a particular solution of th
decoupled motion. This is a fluctuating force whose av
age over the restricted microcanonical distribution gen
ates the BO force. To see this, expand the microcanon
distribution in a power series of the coupling constantg:

r ø
dsE 2 HN 2 Hzd

Ssgd
2 gxz

≠EdsE 2 HN 2 Hzd
Ss0d

,

so that kxdstdl ­
R

rx dx dy dpx dpy ­
gkzl

m 1 osg3d,
where we writeS ­ Ssgd to emphasize its dependen
on the coupling constant. The next order nonvanish
term of 2gkxdstdl is proportional tog4 and we will
neglect it. This is, in fact, a weak coupling limit, als
present in the CL formalism when one considers
perturbation each oscillator of the bath suffers.

The average of the last term can be written in ter
of the autocorrelation functionCxstd ­ kxdst 1 tdxdstdl.
Defining the spectral density [12]
-
-
al

g

s

Sxsvd ­ 4 Re
Z `

0
e2ivtCxstd dt , (8)

and using the expansionsxst 1 td ­
P

l e1illst1tdCp
l 3

w
p
l s0d andxstd ­

P
k e2ilk tCkwks0d, we get

Sxsvd ­ 4 Re
X
k,l

Z `

0
e2isv2lldt2islk 2lldtkCkCp

l wkwp
l l dt

­ 4p
X

l

dsv 2 lld jClj
2

by the orthonormalization of the basis. Therefore we c
write the last term in Eq. (7) as

g2

4p

Z `

0
Sxsvd

√Z t

0
sinvst 2 t0dzst0 d dt0

!
dv . (9)

The form of this term is in exact agreement with th
Caldeira-Leggett treatment of dissipation. But here w
have a spectral density which depends on the cha
motion. In particular, we can show [see Eq. (5) and (9
that the long periodic orbits in a chaotic system cau
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Sxsvd to be nonvanishing for low frequencies, a prope
that is in contrast with the linear dependence the spec
density is assumed to have in [5].

We display in Fig. 3 the numerically calculated (d
coupled) correlationCxstd for the total energyE ­
0.38. It can be well fitted by the usual correlatio
s2e2at cosv0t [12], where s2 ­ 1.886, a ­ 4.17 3

1022, andv0 ­ 0.1966. Using this expression,Sxsvd is
given by

2as2

√
1

sv 1 v0d2 1 a2 1
1

sv 2 v0d2 1 a2

!
.

Unfortunately, the integral inv cannot be written in
closed form, as it has an odd integrand, but the evolu
equation we have forkzl can still be handled numerically
Considering the equation forkzl we obtained

Mzkz̈l 1 lkzl 1 4bkz3l 1

ø
≠Vr

≠z

¿
­ F szd , (10)

whereF stands for the convolution term depending
the correlation function (9), we see that for nonzerob

the term inkz3l turns out to be a time-dependent potent
for the averaged motion. Its difference fromkzl3 is large
when chaos is present, while tiny when the fast variab
are in a regular regime. It also increases with time a
is the source of enormous oscillations of the avera
renormalized energyEzr , shown in Fig. 2.

A simplified application of this approach is to consid
l ­ 2 3 1023 andb ­ 0, a setting that makes the perio
of the (decoupled) slow motionø1400 and linearizes
(10). We integrate this equation iteratively, compari
the curve for the renormalized energyEzr

obtained from it
with the one obtained from the previous method: coupl
to a microcanonical ensemble of chaotic systems. T
curves are shown in Fig. 4. Besides the good agreem
attention must be drawn to the amplitude of variation
Ezr

, much lower than both the observed in Fig. 2 and
BO potentialg2kzl2y2m.

Therefore, when the system of interest is linear,
Born-Oppenheimer force is dominant and dissipation

FIG. 3. Autocorrelation of the fast coordinatex as a fun-
ction of time. The correlation time2

pa ø 15 is a measure of
the fastness of the chaotic motion.
y
ral

-

n

n

l

es
d

ed

r

g

g
he
nt,
f
e

e
p-

FIG. 4. Renormalized energyEzr in function of time for a
slow linear oscillator,l ­ 2e 2 3, b ­ 0. Smooth curve
obtained from Eq. (9) and the other obtained from the a
eraged motion. Total energy is the same as in Fig
The amplitude of variation ofEzr is less than the BO
potential.

pears as a small correction. However, if thez system has
a nonlinear character, exemplified here by a quartic
cillator, the differencek ≠V

≠z l 2
≠

≠z V skzld prevails over the
BO force for the chaotic regime. Dissipation, neverth
less, still exists in the latter case.

The conclusion of this work can be summarized
Eq. (10), which shows a second effect of the coupling
a system of interest to a chaotic environment besides
Born-Oppenheimer force, a term depending only on
correlation of the coupled chaotic coordinate.
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