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Relationship between Delayed and Spatially Extended Dynamical System
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The interpretation of delayed dynamical systems (DDS) in terms of a suitable spatiotem
dynamics is put on a rigorous ground by deriving amplitude equations in the vicinity of a
bifurcation. We show that comoving Lyapunov exponents can be defined and computed in a
From the propagation of localized infinitesimal disturbances in DDS, we show the existen
convective type instabilities. Moreover, a widely studied class of DDS is mapped onto an evo
rule for a spatial system with drift and diffusion.
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The investigation of dynamical systems with delay
feedback such as

Ùy ­ F sy, ydd , (1)

whereyd ; yst 2 T d is the delayed variable andT is the
time delay, has revealed analogies with 1D spatially
tended systems (SES). It has been shown that statis
indicators such as, e.g., the fractal dimension, are ex
sive quantities, proportional to the delay timeT , which
appears to play a role very similar to the size of a spa
system [1]. A more direct evidence of the analogy
been found by introducing a two-variable representat
i.e., by defining the time as

t ­ s 1 uT , (2)

where s [ f0, T g is interpreted as a space variable a
u [ N plays the role of a (discrete) time [2]. In fac
such a representation allows identifying the formation
propagation of “space-time” structures as, e.g., def
and spatiotemporal intermittency [3].

The advantage of a space-time representation is ev
once it is realized that the long-range interaction w
the delayed variable can be reinterpreted as a short-r
coupling in the new variables, sinceyd ­ yss, u 2 1d.
However, at variance with a SES, the variabley is
here updated asynchronously. Moreover, there is a c
difference in the boundary conditions which connect e
delay unit with the following one. In the limitT ! `,
we expect the latter difference to play no signific
role in determining the “bulk” properties of a delay
dynamical system (DDS). This is confirmed by numeri
simulations revealing that the Lyapunov spectrum
independent ofT in the limit of large delays [4].

A general question arising from the above observati
is to what extent the behavior of a delayed system
be assimilated to that of a SES and its properties th
from explained. In this Letter, we show the existence
a deep relationship between DDS and asymmetric S
In particular, instabilities arising in DDS can be “gen
ally” interpreted as convective instabilities. This analo
is first proved by extending the method of comoving Ly
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punov exponents [5] to DDS. From numerical and ana
ical studies, it turns out that only disturbances propaga
within a suitable angular cone are exponentially amplifi

Moreover, we apply the method of amplitude equatio
in the vicinity of a Hopf bifurcation, arriving at a comple
Ginzburg-Landau equation. Such an approach applies
instance, to the experimental results of Ref. [3] whi
have been successfully compared with the evolut
equation for the complex variabley,

Ùy ­ my 2 s1 1 ibd j yj2y 1 hyd . (3)

Finally, we consider the well known class of systems

Ùy ­ 2y 1 Fs ydd , (4)

which, for the particular choicesFszd ­ bzys1 1 z10d
and Fszd ­ a sinsz 2 z0d, reduces to Mackey-Glass [6
and Ikeda [7] models, respectively. We show that
interpretation of Eq. (4) as the composition of a loc
discrete-time nonlinear mapping with a diffusion opera
is very powerful indeed.

Let us start from the propagation of localized distu
bances in a generic DDS such as in Eq. (1). The lin
stability analysis amounts to studying

Ùu ­ mu 1 hud , (5)

whereu ­ dy, m ­ ≠yF , andh ­ ≠yd F can be assumed
to be complex. In thess, ud plane, Eq. (5) can be rewrit
ten as

≠suss, ud ­ muss, ud 1 huss, u 2 1d . (6)

Computing comoving Lyapunov exponents is tantamo
to finding a solution of Eq. (6) with initial condition
uss, 0d ­ dssd, wheredssd is the Diracd function. The
comoving Lyapunov exponent is then defined as

Lsad ­ lim
r!`

lnjuss, udj
r

, (7)

wherer anda are the polar coordinates in thess, ud plane .
The above definition is slightly different from the usual o
[5] in that the spectrumL is parametrized bya instead of
by y ­ tana, while the growth rateL is referred to the 2D
distancer instead of the timeu. This choice is motivated
© 1996 The American Physical Society
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by the desire to describe the propagation with infin
velocity (a ­ py2) also in a properly scaled manner.

Some general features can be extracted from the s
of the simple casem andh constant (i.e., by investigatin
the stability of the stationary state). The exact solution
Eq. (6) is

uss, ud ­
hu

su 2 1d!
su21ems . (8)

In the limit of larges andu, we can make use of Stirling’
approximation, obtaining

Lsad ­ mR sina 1 f1 1 lnsjhjtanadg cosa , (9)

wheremR indicates the real part ofm, while j ? j indicates
the modulus. Analogously to SES, where the comov
exponent is independent of the system size, hereLsad is
independent of the delayT . The maximum growth rate
is attained at an anglea ­ a0 with the solution of the
transcendental equation

y2
0 lnsjhjy0d ­ mRy0 1 1 , (10)

wherey0 ­ tansa0d is the corresponding velocity of prop
agation. The threshold condition for an exponential ins
bility, Lmax ­ 0, yields jhj ­ 2mR which is derived for
y0 ­ 1yjhj [8]. It is interesting to notice that the stabi
ity is determined from thereal part of m as it normally
happens in continuous-time flows, and from themodulus
of h which plays the role of a multiplier in a discrete-tim
mapping.

In the limit a ! 0, the leading contribution toL comes
from the logarithmic term which becomes infinitely ne
ative, no matter how large the values of bothm and h

are. This means that there cannot be any propagatio
disturbances with zero velocity as indirectly confirmed
the experimental results of Ref. [3] and by the simulatio
reported therein, where coherent structures are alway
sociated with a nonzero finite drift. At the opposite lim
we find that the growth rate corresponding to a infin
velocity is mR, i.e., it depends on the “instantaneous co
pling” only.

In order to test the general validity of the abo
findings, we have computed numerically several spectr
comoving exponents for models (3) and (4). Whether
not the maximum of the spectrum is strictly positive, o
can notice in Fig. 1 that it always occurs at a finite ang
meaning that there is a preferred direction (i.e., veloc
for the propagation of perturbations.

SES exhibit a bell-shaped spectrum which is cente
around 0 in the case of a spatial symmetric coupling, w
in open-flow systems the maximum corresponds to
propagation velocity of perturbations [5]. Accordingly, t
onset of chaos in a DDS strongly resembles the onset
convective instability in a spatial system [9]. Moreov
the comoving exponent diverges logarithmically to2` for
a ! 0 as seen from the inset, while it approaches a fin
value fora ! py2. The latter value, which correspond
to a pure “spatial” propagation, can be simply obtain
by neglecting the delayed contribution in Eq. (6).
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FIG. 1. Comoving Lyapunov spectra for the delayed comp
Landau model withm ­ 20.8, h ­ 1, b ­ 3, Ikeda model
with a ­ 3 andz0 ­ 0, and Mackey-Glass equation forb ­ 3.
The delay time is alwaysT ­ 100. Logarithmic tails are
reported in the inset.

principle, Lspy2d can be positive and, in such a cas
it coincides with the anomalous exponent as defined
Ref. [10]. This exponent has a special meaning in t
it measures the tendency for the signal over a given d
unit to synchronize with the evolution in the previous un

The simplest framework where the deep analogy
tween DDS and 1D SES can be revealed is offered by
dynamics in the vicinity of a bifurcation, which typicall
factorizes in the product of a slow and a fast evoluti
As a consequence, one can get rid of the discretene
the “time” variable u. We recall that this is precisel
the experimental situation of Ref. [3]. The above qu
itative considerations can be put on a quantitative b
by extending the method of amplitude equations [11]
a DDS. This allows us to show that the dynamics o
DDS in the vicinity of a Hopf bifurcation corresponds
that of a complex Ginzburg-Landau (CGL) equation in
suitable moving frame the velocity of which is determin
self-consistently. For the sake of simplicity, we limit ou
selves to describe the reduction method with referenc
model (3), introduced in Ref. [3] to account for the exp
imental findings.

As indicated by the comoving analysis, there is
preferred velocity for the propagation of informatio
and disturbances, so that it is convenient to express
equation in the moving framesj, td defined asj ;
s 2 yu, t ; u. In analogy with SES, we introduc
the scaling ansatz corresponding to a Hopf bifurcat
(without loss of generality, we assume thatm is real),

m ­ 2h 1 m1´2, (11)
where ´ ø 1 is the smallness parameter. The varia
zsj, td ; ysj, ud can be formally expanded in powe
of ´,

zsj, td ­ eift
X̀
j­1

´jZs jds´j, ´2td , (12)
2687
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whereZs jd denotes thejth coefficient,f is the phase o
h, and the exponential term contains the fast time dep
dence. Finally, the delay termzd can be expanded as

zdsj, td ­ eifst21d
X̀
j­1

´jZs jds´j 1 ´y, ´2t 2 ´2d

­ eifst21d
X̀
j­1

´jfZs jds´j, ´2td

1 Z
s jd
j s´j, ´2td´y

2 Zs jd
t s´j, ´2td´2 1 · · ·g . (13)

Inserting Eqs. (11)–(13) into Eq. (3), and setting t
coefficients of thé powers, we find that the first orde
term vanishes identically, while the next two orders yie

Z
s1d
j ­ jhjyZ

s1d
j , (14)

Z
s2d
j ­ m1Zs1d 2 jhjZs1d

t 1 jhjyZ
s2d
j

1
1
2

jhjy2Z
s1d
jj 2 s1 1 ibd jZs1dj2Zs1d. (15)

Equation (14) is identically satisfied if we fix

y ­
1

jhj
, (16)

which is exactly the velocity of the maximum comovin
exponent previously discussed. Substitution of Eq. (
into Eq. (15) yields

hZs1d
t ­ m1Zs1d 1

1
2h

Z
s1d
jj 2 s1 1 ibd jZs1dj2Zs1d,

(17)

which is a Ginzburg-Landau equation with a real diffusi
coefficient. This implies that we are in the Benjamin-F
stable region [11] where spatiotemporal intermittency
been observed [12]. This provides a first indication
the good correspondence with the original model wh
the maximum comoving exponent has been found to
nearly zero.

It is interesting to notice that the phase factorf does
not play any role, as it measures the dephasing of
homogeneous solution over the whole lattice lengthT .
In order to test the goodness of the above deriva
we have simulated both Eqs. (3) and (17) form ­ 20.8
and h ­ 1, reporting the patterns in Fig. 2. The patte
resulting from Eq. (3) has been presented in such a wa
to remove the drift, i.e., by suitably finding the appropria
sj, td variables. The corresponding velocity is very clo
to the theoretical expectationy ­ 1. Moreover, the two
patterns clearly reveal the same features with only a m
difference in the spatial scale of the various structu
However, in judging the quality of the agreement, o
has to bear in mind that, besides the approximation
the derivation of Eq. (17), qualitatively different bounda
conditions influence the two simulations: the rightm
value in a spatial configuration is connected to the leftm
one of the next configuration in the DDS [Fig. 2(a)], wh
periodic conditions are fixed in the SES [Fig. 2(b)].
2688
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FIG. 2. Space-time representation for the delayed comp
Landau model with the same parameter values as in Fig. 1.
modulus ofy is plotted: (a) direct simulation in a frame movin
with a velocityy ­ tana0 ­ 1 (see text); (b) integration of the
corresponding CGL. Time (1 # u # 500) is increasing from
top to bottom. The horizontal axis, representing the space
direction, corresponds to a delay unitT .

The above mentioned accord indicates that the m
ping of a DDS onto a continuous-time model is effecti
not only in the vicinity of the Hopf bifurcation. However
there are systems where two consecutive spatial confi
rations are significantly different from one another, so t
the discreteness ofu cannot be removed. This is the ca
of the pattern reported in Fig. 3(a), which refers to t
Ikeda model (withT ­ 100 and a ­ 3), where one can
see coherent structures coexisting with localized spa
regions characterized by clear temporal discontinuities

The evolution from one to the next delay unit for a mod
of type (4) can be formally seen as the composition of t
operators

yd ! zd ­ Fs ydd ! y ­ L zd , (18)
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FIG. 3. Space-time representation for the Ikeda model w
the same parameter values as in Fig. 1. Both patterns
plotted every fourth delay unit for 1300 delay units. F
clarity reasons, only1y3 of a delay unit is reported. (a) The
result of a direct simulation in a frame moving with velocit
y ­ tana0 ­ 1 (see text); (b) results from the integration o
the corresponding discrete time model.

whereL is the propagator of the linear differential equ
tion. The nonlinear operatorF transformingyd to the
intermediate variablezd acts exactly as the local map i
standard lattices of coupled maps [13]. The action ofL

is better seen in Fourier space

yskd ­
zdskd

1 1 ik
, (19)

wherek is the spatial wave number. Up to second ord
in k, the above operator can be approximated by

yskd ­ zdskde2ike2k2y2, (20)

where e2ik is responsible for the shift from one to th
successive delay unit, while the remaining Gaussian te
corresponds to a diffusion in real space with a diffusi
coefficient equal to 1. The result of the integration schem
h
re

r

m

,

with L approximated by a normal diffusion process [i.
by using Eq. (20) without shift], is reported in Fig. 3(
showing a very good agreement with the original patt
in a moving frame with velocityy ­ 1. The same accurac
is found also for smaller and larger values ofh where the
evolution converges to a completely ordered and a m
chaotic pattern, respectively. Therefore, we find again
the first two leading terms in the expansion of the spa
operator are responsible for the propagation of struct
and for the diffusivelike properties.

Since both methods for approximating a DDS with
SES give rise, after removing the drift, to a spatia
symmetric model, we can conclude that, at least in
regimes that we investigated, the strong asymmetry
the spectra in Fig. 1 with respect to their maximu
value does not play a significant role in determining
properties of the evolution.

In this Letter we have shown on a quantitative basis
DDS can be assimilated to SES and that typical indica
of spatial systems, as the propagation of disturbances
be defined and provide interesting information about
instabilities occurring in this class of systems. Fina
because of the intrinsic discreteness of the time axis, D
represent the closest physical models to lattices of cou
maps [13] and thus they represent serious candidate
the experimental observation of the many phenom
found in simulations on those abstract systems.
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