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Relationship between Delayed and Spatially Extended Dynamical Systems
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The interpretation of delayed dynamical systems (DDS) in terms of a suitable spatiotemporal
dynamics is put on a rigorous ground by deriving amplitude equations in the vicinity of a Hopf
bifurcation. We show that comoving Lyapunov exponents can be defined and computed in a DDS.
From the propagation of localized infinitesimal disturbances in DDS, we show the existence of
convective type instabilities. Moreover, a widely studied class of DDS is mapped onto an evolution
rule for a spatial system with drift and diffusion.

PACS numbers: 05.45.+b

The investigation of dynamical systems with delayedpunov exponents [5] to DDS. From numerical and analyt-
feedback such as ical studies, it turns out that only disturbances propagating
) within a suitable angular cone are exponentially amplified.

y=F0.ya), (1) Moreover, we apply the method of amplitude equations

wherey, = y(t — T) is the delayed variable arfdis the in.the vicinity of a Hopf bifurcation, arriving at a complex
time delay, has revealed analogies with 1D spatially exSinzburg-Landau equation. Such an approach applies, for
tended systems (SES). It has been shown that statisticQiStance, to the experimental results of Ref. [3] which
indicators such as, e.g., the fractal dimension, are exteffave been successfully compared with the evolution
sive quantities, proportional to the delay tirie which ~ €quation for the complex variable

appears to play a role very similar to the size of a spatial y=puy — (1 +iB)|yl* + nya. 3)
system [1]. A more direct evidence of the analogy has .

been found by introducing a two-variable representation, Finally, we consider the well known class of systems
i.e., by defining the time as y=—y+ F(ya), (4)

t=o + 0T, (2)  which, for the particular choice#(z) = bz/(1 + z'°)
o i and F(z) = asin(z — zo), reduces to Mackey-Glass [6]
where o € [0,7] is interpreted as a space variable andyng keda [7] models, respectively. We show that the

6 € N plays the role of a (discrete) time [2]. In fact, interpretation of Eq. (4) as the composition of a local
such a representation aII_ows identifying the formation anqjiscrete-time nonlinear mapping with a diffusion operator
propagation of “space-time” structures as, e.g., defectg very powerful indeed.

and spatiotemporal intermittency [3]. .. Let us start from the propagation of localized distur-
The_advantage of a space-time representation is eV"_jeBBnces in a generic DDS such as in Eq. (1). The linear
once it is realized that the long-range interaction W'thstability analysis amounts to studying

the delayed variable can be reinterpreted as a short-range )

coupling in the new variables, sinog = y(o,0 — 1). U= pu+ nug, (5)

However, at variance with a SES, the variableis whereu = 8y, u =0, F, andn = d,, F can be assumed
' 4 ' 'd

here updated asynchronously. Moreover, there is a clegh pe complex. In théo, #) plane, Eq. (5) can be rewrit-
difference in the boundary conditions which connect eachep, g5

delay unit with the following one. In the Iimif’ — oo,

we expect the latter difference to play no significant dgu(o,0) = pu(o,0) + qu(o,0 —1).  (6)
role in determining the “bulk” properties of a delayed computing comoving Lyapunov exponents is tantamount
dynamical system (DDS). This is confirmed by numericalyy finding a solution of Eq. (6) with initial condition
simulations revealing that the Lyapunov spectrum ISy(r,0) = 8(cr), wheres (o) is the Diracs function. The

independent of" in the limit of large delays [4]. comoving Lyapunov exponent is then defined as

A general question arising from the above observations
is to what extent the behavior of a delayed system can Ala) = lim M’ @)
be assimilated to that of a SES and its properties there- r—e r

from explained. In this Letter, we show the existence ofwherer anda are the polar coordinates in the, ) plane .

a deep relationship between DDS and asymmetric SES.he above definition is slightly different from the usual one
In particular, instabilities arising in DDS can be “gener-[5] in that the spectrum\ is parametrized by instead of
ally” interpreted as convective instabilities. This analogyby v = tana, while the growth raté\ is referred to the 2D
is first proved by extending the method of comoving Lya-distancer instead of the timé&. This choice is motivated
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by the desire to describe the propagation with infinite
velocity (¢ = 7/2) also in a properly scaled manner.

Some general features can be extracted from the stud
of the simple casg and» constant (i.e., by investigating
the stability of the stationary state). The exact solution of
Eq. (6) is

0 A
— n 0—1 uo
u(o, ) @ =1 o’ et (8)
In the limit of largeo andf, we can make use of Stirling’s
approximation, obtaining

Ala) = pgsina + [1 + In(|nltana)]cos, (9)

whereu indicates the real part qf, while | - | indicates
the modulus. Analogously to SES, where the comoving
exponent is independent of the system size, gie) is
independent of the dela§y. The maximum growth rate
is attained at an angle = «( with the solution of the
transcendental equation

1.5

FIG. 1. Comoving Lyapunov spectra for the delayed complex

Landau model withu = —0.8, n = 1, B8 = 3, lkeda model

with « = 3 andz, = 0, and Mackey-Glass equation for= 3.
The delay time is always’ = 100. Logarithmic tails are

vgIn(Inlvo) = prvo + 1. (10) reported i}r/1 the inset. g ’

wherevy = tan(ay) is the corresponding velocity of prop-

agation. The threshold condition for an exponential inStaprincime’ A(7T/2) can be positive and, in such a case,

bility, Amax =0, yields || = —ur which is derived for
vo=1/|n| [8]. Itis interesting to notice that the stabil-
ity is determined from theeal part of w as it normally
happens in continuous-time flows, and from thedulus

of n which plays the role of a multiplier in a discrete-time

mapping.
In the limit « — 0, the leading contribution td. comes

from the logarithmic term which becomes infinitely neg-

ative, no matter how large the values of bgthand

it coincides with the anomalous exponent as defined in
Ref. [10]. This exponent has a special meaning in that
it measures the tendency for the signal over a given delay
unit to synchronize with the evolution in the previous unit.
The simplest framework where the deep analogy be-
tween DDS and 1D SES can be revealed is offered by the
dynamics in the vicinity of a bifurcation, which typically
factorizes in the product of a slow and a fast evolution.
As a consequence, one can get rid of the discreteness of

are. This means that there cannot be any propagation @he “time” variable 9. We recall that this is precisely
disturbances with zero velocity as indirectly confirmed bythe experimental situation of Ref. [3]. The above qual-
the experimental results of Ref. [3] and by the simulationstative considerations can be put on a quantitative basis
reported therein, where coherent structures are always agy extending the method of amplitude equations [11] to
sociated with a nonzero finite drift. At the opposite limit 3 pDS. This allows us to show that the dynamics of a
we find that the growth rate corresponding to a infinitepps in the vicinity of a Hopf bifurcation corresponds to
velocity is ug, i.e., it depends on the “instantaneous cou-that of a complex Ginzburg-Landau (CGL) equation in a
pling” only. suitable moving frame the velocity of which is determined
In order to test the general validity of the aboveself-consistently. For the sake of simplicity, we limit our-
findings, we have computed numerically several spectra ofelves to describe the reduction method with reference to
comoving exponents for models (3) and (4). Whether oimodel (3), introduced in Ref. [3] to account for the exper-
not the maximum of the spectrum is strictly positive, onéjmental findings.
can notice in Fig. 1 that it always occurs at a finite angle, As indicated by the comoving analysis, there is a
meaning that there is a preferred direction (i.e., velocitypreferred velocity for the propagation of information
for the propagation of perturbations. and disturbances, so that it is convenient to express the
SES exhibit a bell-shaped spectrum which is centeredquation in the moving framé¢, 7) defined asé =
around O in the case of a spatial symmetric coupling, whilgy — 9,7 = 6. In analogy with SES, we introduce
in open-flow systems the maximum corresponds to thghe scaling ansatz corresponding to a Hopf bifurcation
propagation velocity of perturbations [5]. Accordingly, the (without loss of generality, we assume thais real),
onset of_ chgos in a DDS strongly resembles the onset of a w=-n+ us (11)
convective instability in a spatial system [9]. Moreover,Where e <1 is the smallness parameter. The variable

the comoving exponent diverges logarithmically-te for _ .
a — 0 as seen from the inset, while it approaches a finitg (- 7) = ¥(£.6) can be formally expanded in powers

value fora — v /2. The latter value, which corresponds ote,
to a pure “spatial” propagation, can be simply obtained

2(&,7) =7 e/2U (g, %),
by neglecting the delayed contribution in Eq. (6). Zi

(12)
In ]
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whereZ/)) denotes thgth coefficient,¢ is the phase of (a)
7, and the exponential term contains the fast time depen-
dence. Finally, the delay tergy can be expanded as

za(&,7) = el Z ajZ(-i)(sf + gv, e’ — &)
j=1
= DY 20 (e, 677)
L=l
+ Zéj)(sf, e*r)ev

— Zﬁj)(sf, elr)e? + -], (13)

Inserting Eqs. (11)—(13) into Eq. (3), and setting the - ~ &"‘L
coefficients of thes powers, we find that the first order d j - ——_
term vanishes identically, while the next two orders yield

e "
(1) (1) o — .
78 = lnloz, (1) o <%
2 2 -
Zé) = mzW — |9z + |77|vZ(§) ® = o
1 (1) . g = :'g_ _
o lnlzZEd = (g 1Z0PZY. () - g -

Equation (14) is identically satisfied if we fix

1 W = —
v Inl” (16) [ ..-*x 1

which is exactly the velocity of the maximum comoving ""5;

exponent previously discussed. Substitution of Eq. (16) - - ,44&

into Eq. (15) yields o

1 ) “}'ﬁ- K
nz®" = uz® + —z8 — (1 + iB)1zVPZY, >

1

2n i _.J"'*l-
which is a Ginzburg-Landau equation with a real diffusion '_ > - . :
coefficient. This implies that we are in the Benjamin-Feir '
stable region [11] where spatiotemporal intermittency has _ -~ - —

been observed [12]. This provides a first indication of ) .
the good correspondence with the original model WhergG. 2. Space-time representation for the delayed complex

. . andau model with the same parameter values as in Fig. 1. The
the maximum comoving exponent has been found to b odulus ofy is plotted: (a) direct simulation in a frame moving

nearly zero. with a velocityv = tana, = 1 (see text); (b) integration of the

It is interesting to notice that the phase factbrdoes corresponding CGL. Timel(= # = 500) is increasing from
not play any role, as it measures the dephasing of tht®op to bottom. The horizontal axis, representing the spacelike
homogeneous solution over the whole lattice length direction, corresponds to a delay it
In order to test the goodness of the above derivation

we have simulated both Egs. (3) and (17) jor= —0.8 The above mentioned accord indicates that the map-

and n- 1, reporting the patterns in Fig. 2.' The pattern ing of a DDS onto a continuous-time model is effective
resulting from Eq. (3) has been presented in such a way as

A ; - ; ot only in the vicinity of the Hopf bifurcation. However,
to remove the drift, i.e., by suitably finding the approprlate,[here are systems where two consecutive spatial configu-

,Eg’ t;)tav?hne%?leetiséal-r 25 Zc():rtr;is&o:dll ngl\\/llglrztg\t/)élrs ;’fgywcvg)serations are significantly different from one another, so that
atterns clearl revegl the same féatures with ’onl a minothe discreteness @f cannot be removed. This is the case
P y y of the pattern reported in Fig. 3(a), which refers to the

difference in the spatial scale of the various structures, . ,-" - qe| with? = 100 anda = 3), where one can

However, in judging the quality of the agreement, ON€see coherent structures coexisting with localized spatial

has to bear in mind that, besides the approximations in

o e . regions characterized by clear temporal discontinuities.
the d_e.rlvatlc_)n of Eq. (17), qualltgtlvely_ dlff(.arent bpundary The evolution from one to the next delay unit for a model
conditions influence the two simulations: the rightmost

value in a spatial configuration is connected to the Ieftmos?f type (4) can be formally seen as the composition of two

one of the next configuration in the DDS [Fig. 2(a)], while operators
periodic conditions are fixed in the SES [Fig. 2(b)]. Ya— 24 = F(ys) =y = Lz4, (18)
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with £ approximated by a normal diffusion process [i.e.,
by using Eqg. (20) without shift], is reported in Fig. 3(b)
showing a very good agreement with the original pattern
in a moving frame with velocity = 1. The same accuracy

is found also for smaller and larger values»pfvhere the
evolution converges to a completely ordered and a more
chaotic pattern, respectively. Therefore, we find again that
the first two leading terms in the expansion of the spatial
operator are responsible for the propagation of structures
and for the diffusivelike properties.

Since both methods for approximating a DDS with a
SES give rise, after removing the drift, to a spatially
symmetric model, we can conclude that, at least in the
regimes that we investigated, the strong asymmetry of
the spectra in Fig. 1 with respect to their maximum
value does not play a significant role in determining the
properties of the evolution.

In this Letter we have shown on a quantitative basis that
DDS can be assimilated to SES and that typical indicators
of spatial systems, as the propagation of disturbances can
be defined and provide interesting information about the
instabilities occurring in this class of systems. Finally,
because of the intrinsic discreteness of the time axis, DDS
represent the closest physical models to lattices of coupled
maps [13] and thus they represent serious candidates for
the experimental observation of the many phenomena
found in simulations on those abstract systems.
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