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Supershells in Metal Clusters: Self-Consistent Calculations
and Their Semiclassical Interpretation
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To understand the electronic shell and supershell structure in large metal clusters we have performed
self-consistent calculations in the homogeneous, spherical jellium model for a variety of different
materials. A scaling analysis of the results reveals a surprisingly simple dependence of the supershells
on the jellium density. It is shown how this can be understood in the framework of a periodic-orbit
expansion by analytically extending the well-known semiclassical treatment of a spherical cavity to
more realistic potentials.

PACS numbers: 36.40.Cg, 31.15.Ew, 31.15.Gy

The structure observed in the mass spectra of large, In order to find out what determines the shell and super-
warmed metal clusters [1-4] can be attributed to theshell structure in metal clusters, we have carried out the
properties of itinerant electrons moving in a finite vol- following program. First we performed a series of calcu-
ume [5,6]. The most prominent finite-size effect is thelations in the homogeneous, spherical jellium model for a
occurrence of pronounced oscillations in the density ofange of different electron densities. A scaling analysis
states [7] giving rise to an oscillating pakt of the total  of the results suggested that changing the electron density
energy, which is superimposed on the smooth Thomasnerely introduces a phase shift in the supershell structure.
Fermi energyE. With increasing cluster radius, one finds It is shown how this can be understood semiclassically in
regular oscillationsghelly whose amplitude is modulated terms of aleptodermous expansipwhere the action in-
(supershells tegrals for the potential under consideration are expanded

Two different theoretical approaches have been usedround a cavity. Thereby we obtain analyticalexpres-
to describe the electronic shell and supershell structursion for the shift of the supershells. Finally it is shown
in large metal clusters. One is the self-consistent jelliunthat the leptodermous expansion works for realistic clus-
model [8]. In its simplest form a cluster is described byter potentials by comparing the shifts of supershells ex-
a homogeneous sphere of given charge density, dressadcted from self-consistent calculations to those given by
with N valence electrons. Treating the electrons selfthe semiclassical formulas.
consistently using density functional theory, the only input  As the starting point of our analysis, we have performed
parameter for such a calculation is the Wigner-Seitz radiusxtensive calculations in the homogeneous, spherical jel-
rg. Although it describes the electronic structure of alkalilium model. We use the local density approximation in
clusters quite well, this model provides little physical the parametrization given in Ref. [14]. Electron densities
insight into the mechanisms underlying the shell andange fromr; = 2.07ao for aluminum tor; = 5.63ay,
supershell oscillations. It is here that the second approaatorresponding to bulk cesium. Cluster sizes were cho-
comes in. Given an effective one-particle potential onesen fromN = 100 to 6000 valence electrons, thus includ-
can find a semiclassical expansion of the oscillating paring the first two nodes of the supershell oscillation for all
of the density of states in terms of classical periodic orbitslensities considered. Typical results #o{V) are shown
[7,9]. Introducing a suitable damping factor one finds forin Fig. 1. It can be seen that the supershells are shifted
the spherical cavity that the oscillations in the density oftowards largerN as the Wigner-Seitz radius decreases,
states are essentially determined by the contributions ofhile the positions of the shell minima are fairly indepen-
triangular and square orbits. The supershells can thugent ofr,. To quantify the supershells we determine the
be understood as a beating pattern originating from thenvelope off (N) by low-pass filtering its absolute value.
contributions of these orbits. The position of the supershell nodes is given by the min-

The semiclassical approach draws its power from théma in the envelope. Filtering out the shell structure, of
fact that the periodic-orbit expansion is known analyti-course, introduces an uncertainty of the order of the dis-
cally for the model case of the spherical cavity. Howevertance between adjacent shell minima. The results of our
potentials with hard walls are only a crude approximationellium calculations are listed in Table I.
to realistic cluster potentials, which have a soft surface. To make a quantitative comparison of the different
Such potentials can also be treated using semiclassicgllium calculations, we describe the problem in terms of
techniques [10,11]. In particular, ultrasoft potentials havedimensionless quantities. In order to do so, the relevant
received much attention [12,13]. Unfortunately in thesescales of the problem have to be identified. Obviously one
cases the action integrals entering the semiclassical fosuch scale is the Wigner-Seitz radius. In fact, we find that
malism have to be evaluated numerically. the amplitude of the oscillation&(N) is proportional to
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that the shift of the supershells is caused by a phase shift
in the contributions of the periodic orbits.

To check this conjecture, we derive an explicit periodic-
orbit expansion for the oscillating pa&(N) of the
total energy. Our approach is based on the fact that
E can, to first order, be extracted from the spectrum
7 of smooth potentials that fit the self-consistent results
Nar =393a, [16]. We start from the observation [17] that in the
semiclassical approximation the density of states naturally
separates into two contributions: the smooth Thomas-
Fermi term p and an oscillating contributiorp. The
latter term describes the quantum corrections to Thomas-
Fermi theory and is given by an expansion over all

Cs r,=5633,

A
6.4)

A
(9.0)

0AF Li r =3264, 1 classical periodic orbits which exist in the potential under
consideration. For a spherically symmetric potential with
exactly two classical turning points the periodic orbits can
be uniquely labeled by two positive integers: the number
a A 1 of timesaA it turns around the origin and the numbeiof
S (15.4) 1 vertices it has. Denoting the classical action along such

a periodic orbit byS(, ), one finds an expression of the

F Gar,=219a
0.5F form [7]
=
£ 00 ~
< PEYAE = 3 A cosSan/l — ean)dE, (1)
-0.5F A A (A7)
: . 16.4 ,
.1_o5 (11(:)1) T {164 whereg(,,,) is the so-called Maslov phase. Unfortunately

the expansion (1) converges quite slowly. This is obvious,

FIG. 1. Oscillating part of the total energy extracted from since it is supposed to approximate the density of states,

self-consistent calgulztions in the homoger?gous, spherical je}’-\’hICh is a sum ofd functlons. Therefore one gsually

lium model. The positions of the supernodes are indicated. INtroduces some damping as to broaden the eigenstates
and make the expansion (1) converge more rapidly. But
we are actually not interested in the density of states,

1/r2. The existence of a surface introduces an additionalather inE(N). In the limit of largeN (which corresponds

scale: the widtha of the surface region. As has been to the semiclassical limit) the oscillating part of the total

shown in [15],« is fairly independent of,. Assuming energy is given by

the shift of the supershells to be a surface effect, we Er(NV) E

identify a/ry = 1/r; as the relevant scaling parameter. EN) = —f dEf dE' p(N;E'). (2)

By plotting the positions of the supernodes as a function 0 0

of 1/r, (cf. Fig. 2) we indeed find a simple relation: The

supernodes are linearly shifted as a functionl 6f,. In . - . .

particular, the first and second supernodes are shifted 1% super-node s 2" super-node

parallel. Describing E(N) semiclassically as a simple

beating pattern [5], it is therefore tempting to conclude 10}

N1/3

Ga

TABLE I. Position of supernodes (given ag'/?) for differ- %_’Z

ent jellium densities. 9r
Material rs iN ag 1st supernode 2nd supernode

Cs 5.63 8.39 14.59 Cs I

- 4 S
Rb 5.20 8.43 14.67 8 N = 7.25 + 6.20/r, 1al N'® = 13.48 + 6.29/r,
K 4.86 8.47 14.75 : : : : .
0.2 0.4 0.2 0.4

Na 3.93 8.95 15.11 11, (17a;) 1/, (1/ay)

Li 3.26 9.15 15.45

Tl 2.48 9.79 16.01 FIG. 2. Position of the first and second supernodes as a

In 2.41 9.85 16.11 function of 1/r,. The error bars are due to the uncertainty

Ga 2.19 10.13 16.37 in locating the supernodes as minima of the envelopg (&f).

The solid line gives a linear fit to the data, the parameters of

Al 2.07 10.20 16.49 - i .
which are given in the plot.
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Here Er(N) is the Fermi energy in Thomas-Fermi ap- face widtha as small parametedeptodermous expan-
proximation. Integrating twice by parts ovgressentially sion). For the classical action we then find

divides the expansion parameteds,,) in (1) by the
square of the classical action along the orbit, thereby

_ cavity ﬁ —-1/3
reducing the importance of the longer orbits, S/l = So [+ <Il + I ,»S> oW, ()

~ - 4A, : .
E(N) = E2 Z 2( v) codSon/fi — eo).  (3) where the expansion parametérsand/, are independent
G St of cluster size; i.e., to leading order surface softness

introduces a phase shift in the periodic-orbit expansion
Thus there is no need of introducing a damping factol(3), Whlle the period of the oscillations is still determined

to accelerate convergence. Actual(N) is dominated by S’ /. An additional phase shift arises from the
by the contributions of the shortest plane periodic orbitsdifference of the Maslov phases, ,) for a soft potential
namely, the triangular and the square orbit. Furthermoreyr a cavity. Finally an inspection of the amplitudes in
inspection of (3) shows that variations in the boundary3) shows that, to leading order it/N, they are not
conditions, which strongly shift the oscillations in[18],  dependent on the shape of the potential. We thus find that
hardly influenceE, since the changes in the density of replacing a cavity by a soft potential with small surface
states are compensated by those in the Fermi energy. parametera amounts to merely shifting phases in the
As an immediate application of the expansion (3),periodic-orbit expansion aE(N).
we can investigate how an increase in density for small Now the question arises whether typical cluster poten-
clusters compared to the bulk affects the electronic shellgals are such that their surface parameter is small enough
and supershells. SucHattice contractionwas suggested for the above expansion to be valid. To judge this, we
by extended x-ray absorption fine structure (EXAFS)have to fit the potentials obtained from our self-consistent
analyses of small clusters [19]. Changing the densitycalculation with some analytical model potential. Since
clearly will change the Fermi energy for a given cluster.the classical action depends only on the potential in the
As we can see from Eq. (3), this will obviously changeclassically allowed region, it seems reasonable to fit only
the overall amplitude off(N). But apart from that the for E < Er. There the self-consistent potential, except
oscillations are determined by the classical actiSpg,)  for possible Friedel oscillations, can be well described by
along the periodic orbits. For a spherical cavity of radiusa Woods-Saxon function
Ry we find

i i . V(r) = Y .
S()\,V)/h = 2v Sin(W)l/V) kFRo, kF = ZmEF/ﬁ’ 1+ exp[(r - Ro)/a]

(6)

4 But fitting only for E < Er seems to imply an error in
calculating the Maslov phases which serve to capture the
hé'nfluence of the classically forbidden region. From WKB

electron density. Hence the electronic shell structure fofluantization it can be seen that the Maslov phases for a

spherical-cavity clusters does not depend on any Iatticl?ep""r""b.Ie system are given by the sum of th_e quantum-
mechanical scattering phases at the classical turning

contraction, except for an overall change in amplitude. ™ ts. For Woods-S tential lculat
This result suggests that the same is true for smoot oints. For Yvoods-s>axon potentials we can caiculate
ese analytically. To leading order, they coincide with

potentials, provided the lattice contraction is not toothe Maslov phases for a square-well potential of depth
large. We have confirmed this by numerically solvin . ) ;
g y Y g—VO [18]. Thus, the error in the potential f&f > Ef

the quantum-mechanical problem for realistic potentials

introducing contractionsAR, of up to 5r,. Thus we will not enter the leptodermous expansion.
9 0 P 2080 . Given the potential (6), we have found analytical expres-
can conclude that a possible lattice contraction will not

. ) sions for the parameterds and/, in the expansion (5) of

noticeably affect the electronic shells and supershells. . : : -
. the classical action. Introducing the abbreviations

Next we turn to the problem of understanding why
the supernodes are phase shifted as a function of jellium Er+ V. A
density (cf. Fig. 2). The most straightforward approach P = 1/F—O and P, = Pcos(—),
would be to solve the integrals, which enter Eg. (3), Vo v
explicitly. Unfortunately, this cannot be done analyti- _ . o .
cally. But in the semiclassical limit, which correspondsthe expansion parameters for a given periodic drhit)
to N — oo, it is sufficient to know the integrals to leading are
order in1/N. The basic idea is then to use the spher-

i i i i i 3v . A 1 . 1
ical cavity as a starting point and expand the action for; _ —Vsm<77—> (_ _ 2) arcsinP) — & — 1
more realistic potentials around this case, using the sur- 2 v P? P?

where the produckrR, depends on the numbe¥ of
electrons inside the cavity, but is independent of t
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and

L 4,,(%777-)1/3[% n2p,) — I ;ZP% arcsinP,) — sin(?)[ln(ZP) + <# - 1)3/2 arcsir(P) — #}}

Details of the calculation will be published elsewhere [Zd)].tial, as, e.g., in the stabilized jellium model [21], increases
We are now in the position to find a simple estimate forthe spill out of the electrons and leads to a softening of
the shift of the supershells. Following [5] we start from the potential at the surface of the cluster. This induces
a drastically simplified version of Eq. (3): All periodic a shift of the supernodes towards largérwhich can be
orbits except the triangulafl,3) and the squarél,4) estimated by the semiclassical technique described above.
orbits are neglected. Furthermore, it is assumed that the Finally, the identification ofr, as the typical length
amplitudes for these orbits are equal. This leaves us witkcale for the supershell problem suggests a justification
an expression of the form of the ad hocprocedure proposed in [4] to improve the

- 1/3 1/3 results of jellium calculations for gallium clusters. There

E = Alcod fiN'* + 1) + cos N2 + )] (7) it was foujnd that the introductior%J of a nonhomogeneous
Fitting the self-consistent potentials with (6), we canjellium background is essential for treating fsalusters,
compare the shift observed in the jellium calculations towhile alkali clusters are well described by a homogeneous
that determined by the leptodermous expansion using thiellium. Assuming that the typical length scale for
ansatz (7). This is shown in Fig. 3. Although we havefeatures in the jellium is the ionic radiug;, while the
introduced a number of approximations, the agreement iength scale for the electrons is the Wigner-Seitz radjus
remarkable. We can thus conclude that the leptodermouse find that the importance of inhomogeneities increases
expansion applies to typical cluster potentials. with the number of valence electrofs,; « (ry/rs)3.

To summarize, we have demonstrated how the semi- | am much indebted to O. Gunnarsson for his invalu-
classical description of a spherical cavity can be generable advice. Helpful discussions with T.P. Martin and
alized to describe the electronic supershells of realistidV. Brack are gratefully acknowledged.
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