
VOLUME 76, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 8 APRIL 1996

ustralia

2

Convergent Close-Coupling Method: A “Complete Scattering Theory”?
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(Received 1 September 1995)

We demonstrate that a single convergent close-coupling calculation of 100 eV electron impact on
the ground state of helium is able to provide accurate elastic and inelastic (n # 3 levels) differential
cross sections, as well as singly, doubly, and triply differential ionization cross sections. This is a most
promising step towards the development of a complete electron-atom scattering theory.

PACS numbers: 34.80.Bm, 34.80.Dp
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Bederson [1] suggested that a goal for experimenta
is to perform “perfect scattering experiments,” tho
which fully determine all aspects of a scattering proces
interest. Such experiments have not only intrinsic va
but allow for the most detailed test of the scattering the
used to calculate the corresponding scattering amplitu
Progress towards this goal has been substantial
continues to attract considerable attention (see Ande
and Bartschat [2], for example).

Similarly, but more generally, it has been our goal
provide a “complete scattering theory.” Such a the
is not only able to describe individual perfect scatter
experiments for a particular scattering process, but
the many possible scattering processes possible f
given incident projectile energy. In other words,
single calculation should yield accurate elastic, inela
excitation, and ionization scattering amplitudes. Su
a theory is possible only if the Schrödinger equat
governing the motion of the interacting particles is solv
accurately irrespective of the total energy in the syst
In our view the convergent close-coupling (CCC) theo
as introduced by Bray and Stelbovics [3] for thee-H
scattering system is a candidate for such a description

The CCC theory is based on the close-coupling (C
formalism, with the coupled equations solved in mom
tum space as outlined by McCarthy and Stelbovics
The coupled target states are obtained by diagonali
the target HamiltonianHT in an orthogonal Laguerr
(Sturmian) basis. The square integrability of the ba
ensures that all of the resulting statesFN

n (with associ-
ated energieseN

n , n ­ 1, . . . , N) may be incorporated in
the CC formalism. The negative-energy states provid
representation of the true discrete target spectrum (FN

n !

Fn, eN
n ! en , 0 asN ! `). The positive-energy state

discretize the target continuum inducing a quadrature
for the integration over the true target continuum (s
Ref. [5] and references therein). Convergence, in say
cross sections, is studied by simply increasing the b
size as this yields a better description of the discrete s
trum and a more accurate quadrature rule for the inte
tion over the true target continuum (see Fig. 1). It is
treatment of both the target discrete and continuum s
spaces that allows the CCC method to be valid irresp
674 0031-9007y96y76(15)y2674(4)$10.00
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tive of the projectile energy or the scattering process
interest.

There is little argument regarding the validity of th
CCC method for calculating the excitation cross sectio
at all energies. In this case the multichannel expans
has the correct boundary conditions (this is why the C
approaches have been historically successful with v
few states at low energies), and, furthermore, expansio
the total wave functionC is performed using a complet
basis. By unitarity it follows that the method is valid fo
the calculation of the total ionization cross section (s
[6], for example). However, it is not so clear as to ho
to obtain detailed differential ionization cross sections.
particular, given a set ofT -matrix elements arising upon
solution of the CCC equations, how do we obtain t
required ionizationT matrix?

FIG. 1. One-electron excited-state energy levels arising fr
the 83- and 75-state CCC calculations. The total energy of
e-He system for 100 eV incident electrons is denoted byE.
© 1996 The American Physical Society
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In the CCC formalism the total wave function i
expanded in an explicitly antisymmetric set ofN square-
integrable statesFN

n via

jC
s1d
i l ø jC

Ns1d
i l ­ A

NX
n­1

jFN
n f

Ns1d
ni l , (1)

whereA is the antisymmetrization (space and spin) o
erator, andf

Ns1d
ni are the unknown one-electron projectile

space functions with outgoing spherical-wave bound
conditions determined upon solution of the coupled eq
tions. We rely on the completeness of our basis so t
equality may be achieved in (1) asN ! `. However,
for any finite N it is clear that such an expansion do
not allow for two (or more) electrons to be at infinity
In other words, arbitrary three-body boundary conditio
cannot be satisfied by (1) for any finiteN . The expansion
(1) may be viewed as a “shielding” approximation in tha
irrespective of the energy distribution of the two (or mor
outgoing electrons, only one electron is allowed to be
infinity, and moves in the field of an asymptotically ne
tral target. This problem does not invalidate the CCC f
malism, but indicates that certain kinematical regions m
require prohibitively largeN for computational purposes
On the other hand, the process which dominates the
tal ionization cross section, where the “ejected” electr
has energy much smaller than the “scattered” electron
likely to be well modeled by the expansion (1) with rel
tively smallN.

The above considerations make it simple for us
move from the consideration of excitationT-matrix ele-
ments to those corresponding to ionization within t
CCC framework. We take the view that the calculati
of ionization processes is essentially the same as tha
excitation processes. We form the ionizationT-matrix
elements from those corresponding to the excitation
statesFN

n with eN
n . 0, which arise upon solution of the

coupled equations simultaneously with those correspo
ing to excitation. As the statesFN

n are normalized to
unity we restore the continuum normalization and boun
ary conditions by multiplying theseT-matrix elements by
the overlapkqs2d

f j F
N
f l, where the continuum waveq

s2d
f

is an eigenstate ofHT and has the energyq2y2 ­ e
N
f .

This is much the same as was done by Brayet al. [7] in
the case ofe-H ionization, which followed the work of
Curran and Walters [8].

Thus, upon solution of the CCC equations we obtain
N-state approximation

kkfFN
f jTN jFikil ­ kkfFN

f jV jC
Ns1d
i l (2)

for the excitationT matrix (eN
f ø ef , 0), and use

kkf q
s2d
f jTN jFikil ­ kqs2d

f jFN
f l kkfFN

f jV jC
Ns1d
i l (3)

for the ionizationT matrix (eN
f . 0). Here the projectile

is denoted by a plane wavekf with corresponding energy
-

ry
a-
at

s

s

,
)
at
-
-
y

to-
n
is

-

o

e

for

of

d-

-

n

k2
fy2. Convergence is tested by increasingN and it is

necessary to establish that convergence in both (2)
(3) is indeed observed, particularly so in the latter case
kqs2d

f j F
N
f l ! ` asN ! `. If convergence is observed

it is equally important that convergence be to the corr
result. In the case of excitation this has already be
extensively studied (see [5,9]). However, in the case
ionization we immediately run into a problem. AsN !

` completeness of our basis should result injC
Ns1d
i l !

jC
s1d
i l andkqs2d

f j F
N
f l kFN

f j ! kqs2d
f j [10]. This implies

kqs2d
f j FN

f l kkkFN
f jV jC

Ns1d
i l ! kkfq

s2d
f jV jC

s1d
i l , (4)

which should have a divergent phase factor, irrespec
of the kinematics [see Eq. (2.51) of Rudge [11] forz1 ­
0, z2 ­ 1], if jC

s1d
i l satisfies the correct three-body boun

ary conditions. As we do observe convergence in (3), p
ticularly in the asymmetric kinematics region, we susp
that the limiting procedure provided by simply increasin
N does not lead to equality in (4). We use experiment
check that convergence is to the correct result.

In the CCC formalism the T -matrix elements
kkmFN

m jTN jFikil and kknFN
n jTN jFikil, where

k2
my2 ­ eN

n and k2
ny2 ­ eN

m , correspond to two distinc
theoretical processes which are observed simultaneo
in the experiment. For this reason we sum the cr
sections for both of these processes. Each of th
T -matrix elements may be written as a coherent sum
direct and exchange amplitudes, but in the case wh
eN

m ø k2
my2 the former T matrix is much larger than

the latter. Summing the probabilities allows us to st
consistent with the definition of the total and the sing
differential ionization cross sections [10].

The aim of this Letter is to demonstrate the abili
of the CCC theory to simultaneously describe accurat
elastic, excitation, and detailed ionization processes a
single projectile energy. For this to be possible we requ
the existence of the corresponding experimental data
a single energy. Thanks to the recent measurem
of triply differential cross sections by Röder, Jung, a
Ehrhardt [12] for 100 eV electron impact ionization o
helium we now have such a set at this projectile energ

The CCC theory for obtaining theT -matrix elements
for electron-impact excitation of helium have been giv
by Fursa and Bray [13]. The only addition necessary
that work is to calculate the above-stated overlaps, wh
is done after evaluation of the continuum wavesq

s2d
f

(separately for singlet and triplet symmetries) in the sa
frozen-core approximation as used for generating
statesFN

n . In testing convergence we writeN ­
Plmax

l­0 Nl

and so need to demonstrate convergence separately
increasinglmax andNl. For this purpose we shall prese
the results of the 69-, 75-, and 83-state calculations. T
one-electron energy levels for the latter two calculatio
(lmax ­ 3) are given in Fig. 1, with the 69-state energ
2675
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levels being the same as those for the 83-state calcula
except for the absence of theF states, i.e.,lmax ­ 2.
Thus comparison of the 83- and 75-state calculati
shows the variation in the results by varyingNl while
keepinglmax ­ 3, and comparison of the 83- and 69-sta
calculations shows the effect of varyinglmax.

In Fig. 2 we present the differential cross sections
excitation of n # 3 states by 100 eV electrons incide
on the ground state of helium. We find excellent co
vergence and essentially quantitative agreement with
measurements of various groups. This is a substan
achievement in itself as no other available theory is a
to do so well [13].

The least detailed ionization process, the total ioni
tion cross section, may be obtained using the optical t
orem, or by simply summing the integrated cross secti
corresponding to the excitation of statesFN

n with eN
n . 0

[6]. The 69-, 75-, and 83-state calculations yield (un
10217 cm2) 3.53, 3.56, and 3.56, respectively, whic
compares favorably with3.63 6 0.2, the experimental es
timate [14]. This result is what should be obtained wh
the singly differential ionization cross section (SDCS)
integrated from zero toEy2. The details of how we ob-
tain the SDCS in the CCC formalism may be found
Ref. [10]. Our results are in good agreement with expe
ment [15] (see Fig. 3). This is particularly encouragi
at the midpoint where one of the electrons is treated
a plane wave expanded using 40 partial waves, and
other is described by Coulomb-like states expanded u
only 3 or 4 partial waves. Here, as was noted earlier [1
we do not have convergence in thel-dependent contri-

FIG. 2. Differential cross sections fore-He scattering at a
projectile energy of 100 eV. The measurements are fr
Register, Trajmar, and Srivastava [16], Cartwrightet al. [17],
and Trajmaret al. [18].
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butions in the vicinity ofe ­ Ey2, yet unitarity ensures
convergence in the summed result.

Next, we move on to the more detailed doubly diffe
ential cross sections which give the angular distribut
for an outgoing electron of particular energy. The in
gral over the angular distribution gives the SDCS. The
are presented in Fig. 4. We find convergence and ag
ment with experiment to be surprisingly good. The fa
that increasinglmax from 2 to 3 has a small effect (differ
ence between the 83- and 69-state results) even when
electrons have energy.20 eV is due to the fact that thes
cross sections are dominated by the ejection of the ta
electron into the1P continuum wave. Such cross sectio
are well described by the theory as convergence in
wave is readily obtained by the inclusion of1,3D and1,3F
states in the CCC formalism.

Finally, we turn to the most detailed ionization in
formation, the triply differential cross sections (TDCS
These describe the angular behavior of one of the o
going electrons for a given energy and position of t
other. In Fig. 5 we present the calculated TDCS for
coplanar asymmetric geometry, where the angular dis
bution uB is for the slow electronEB ­ 4 eV with the
corresponding fast electron being observed at the f
anglesuA ­ 220±, 225±, 230±, and 2 150±. The mea-
surements, due Röder, Jung, and Ehrhardt [12], are
ternormalized so that a single experimentally estima
normalization point atsuA, uBd ­ s220, 75d fixes the scale
for all four figures. We see that the CCC theory obta
essentially quantitative agreement with experiment. S
excellent agreement with experiment poses the ques
as to whether the CCC theory will be able to obtain c
rect TDCS irresective of the choice of the kinematics a

FIG. 3. The singly differential cross section for 100 e
electron impact ionization of the ground state of helium. T
energy of an outgoing electrone ranges from0 to the total
energy E. The measurements, denoted by MJE86, are fr
Ref. [15].
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FIG. 4. The doubly differential cross sections for 100
electron impact ionization of the ground state of heli
for various indicated energies of an outgoing electron.
measurements, denoted by MJE86, are from Ref. [15].

geometry. We are unable to answer this question at
stage. For example, preliminary calculations have re
duced the shape of the symmetric coplanar TDCS in a n
ber of cases, but appear to be too low in magnitude.

FIG. 5. The triply differential cross sections for 100 e
electron impact ionization of the ground state of helium. T
measurements are from Röder, Jung, and Ehrhardt [12].
e
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-
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In conclusion, we have seen that a single CCC calcu
tion may readily obtain accurate cross sections for discr
excitation, as well singly, doubly, and triply differentia
ionization. For this reason we believe the CCC theo
goes some way to being a complete scattering theory
now remains to extensively test the CCC approach for c
culating differential ionization processes at lower impa
energies with the vast array of the available experimen
TDCS at various geometries and kinematic combinatio
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