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We discuss Bose-Einstein condensation in a trapped atomic gas and analyze how the sign of the
scattering lengtta and the ration of the interaction between particles to the level spacing in the trap
influence the behavior of the condensate wave funcilfgn We find that fora < 0 andn < 1 it
is possible to form a metastable Bose condensate, with a long characteristic lifetime with respect to
contraction and transitions of particles to excited trap states. nFs¥ 1 a negative scattering length
prevents the formation of the condensate.a If> 0, then an increase of density is accompanied by the
evolution of ¢, to a comparatively wide quasihomogeneous distribution.

PACS numbers: 34.20.Cf, 03.75.Fi

One of the main goals in the study of low-temperaturerametern < 1, and the shape afy(r) is close to that of
atomic gases is to observe Bose-Einstein condensatiane-particle wave function in the ground state of the trap-
(BEC) and related macroscopic quantum phenomenaing potential, i.e., BEC can be regarded as macroscopic
Magnetostatic trapping is a powerful method of achievingoccupation of this state. By increasiig we arrive at the
BEC, since it provides surface-free confinement andpposite limiting case; > 1, which can be called quasi-
allows efficient evaporative and optical cooling [1-4]. A homogeneous. In this case the size of the BEC spatial
growing interest in trapped gases is stimulated by recentegion, ! > [y, and the structure of trap levels becomes
success in achieving BEC in experiments with trappedinimportant as the levels will be smeared out by the inter-
rubidium [3], lithium [4] and sodium [5], where densities action between particles.

n ~ 10'2-10"% cm~3 and temperaturegl uK have been For attractive interaction between particles< 0) the
reached. picture drastically changes. A Bose condensate with

The character of BEC in trapped atomic gases isy > 1, for which the discrete structure of trap levels
influenced by the presence of discrete trap levels. Fois not important, cannot be formed at all, since in this
noninteracting particles, Bose condensation occurs in thease the accumulation of particles in one quantum state
ground state of the trapping potential. In a weaklywould be associated with an increase of energy (see
interacting trapped gasi{|al® < 1, with no being the below). Moreover, even prepared artificially, such a
condensate density and the scattering length) under Bose-condensed state will be absolutely unstable. On
the condition |a| <« [y, where [, is the amplitude of the other hand, the case < 1 is characterized by the
zero point oscillations in the trap, the interaction betweerpresence of an energy gap for one-particle excitations.
particles introduces a new dimensionless parameter As shown below, in this case it is possible to form a

n = nolU|/e0 (1) metastable Bose-condensed state. This state is separated

5 Ak dm is th hich is th by a large energy barrier from lower states, which ensures
(U = dmh”a/m andm is the atom mass), which is the oj,n4 characteristic lifetime of the metastable condensate.
ratio of the mean interaction energy per particle to th

o . e . © We consider a Bose gas with a fixed number of
characteristic level spacing, ~ #i*/mly. With the one- o hiclesy in a potential wellV(r). Under the conditions
particle wave function Iocal3|zed in asp_atlal region of SIZ€|,| « 1, and nolal® < 1, one can use the potential of
lo one hasy = No/(4m /3)ly, whereN, is the number of  qi¢ interaction in the formU(r) = /8(r). Then the
particles in the condensate. We assume Schrodinger equation for the Heisenberg field operator of

No> 1, (2) atoms,(r, 1), reads

which, due to the conditiotu| < Iy, is compatible with if(od/at) = —(K2/2m)Ad + V(r)§ + Tt g,
the inequalityngla|® < 1. (3)
A question of principal importance concerns the stabil-

ity of the condensate with respect to elastic interactionWhere the last term in the right-hand side of Eg. (3)

between particles. A repulsive interactian> 0) makes corresponds to the interaction of atoms with each other.

the condensate stable, as in this case the transfer of a pTrhe field operator)s can be represented as a sum of

ticle from the condensate to any other state should lead tpe a}bove-(_:on(_jensate past and the cond_ensate wave
. . unction which is ac-number (see, e.g., [6]):

increasing energy of the system. The shape of the conden- R -
sate wave functiofly(r) in the trapping field significantly =14+ . (4)
changes with an increasing number of condensate paAveraging both sides in Eq. (3) and recalling that in
ticles, Ny. For sufficiently smalivy (but Ny > 1) the pa- thermal equilibriumyy ~ exp(—iut), where u is the
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chemical potential [6], we obtain For n < 1 the nonlinear term in Eq. (5) is of minor
— B2/ 2m) Ao + V(o + T3 — gy = 0. (5) importance, and the solution is close to
Herei = p — 2n'U, andn/(r) = (J'tJ’) is the density Yo = (No/m13)"? exp(—r?/2i3) . (8)

of above-condensate particles in the spatial BEC regio
At ¢ > 0 andT > nU the density:’ is coordinate inde-
pendent and equals the critical BEC density= 2.6A7"
[7-10], where Ay = Q@#2/mT)"/? is the thermal de
Broglie wavelength of the atom. Fdt < nU we have
n' < ng, and @z = w. In Eg. (5), due to the condition

"he size of the condensatss close to the amplitude of
zero point oscillations in the tragy = (%/mw)/?, and
the condensate density; « Ny. The parameter; takes
the formn = (3a/ly)Ny, and the inequalityy < 1 can
be rewritten as

nlal®> < 1, we neglected the anomalous averdgé)’). 1 < Ny < lp/a. 9)
This equation should be solved using the normalization ) . ,
condition In fact, under this condition one can consider BEC as
macroscopic occupation of the ground state in the trap-
| vitwwr = o, 6) pingfield. .
In the limiting casen > 1, where the correlation
which gives a relation betweem andNy. length

The possibility to turn to representation (4) and intro- _ SN2 12
duce ¢ as an average of the field operatprassumes le = 1/ @mnoU)"" =~ Ip/(21) """ < Iy, (10)

that ¢ is a quantity averaged over a volume containingthe kinetic energy term in Eq. (5) is unimportant, as well
a large number of particles. At the same time, the lineags the discrete structure of trap levels. The solution is
size of this volume should be small compared to a chargjose to a well-known result [7,8] following directly from

acteristic distance at whiclky changes due to the field gq. (5). withV(r) given by Eq. (7), we have
inhomogeneity. Therefore, Eq. (5) can be used for find- 12

ing a unified condensate wave function only if inequality %o = {{iz — V(r)1/T}? = nomadl — r*/215m)"/2.
(2) is satisfied. (11)

For a > 0 we numerically solved Eg. (5), with the \ye ca| this case quasihomogeneous, singe is a
normalization condition (6), in a harmonic potential smooth function ofr, and, due to inequality (10), spatial

V(r) = mw?r?/2, (7) correlation properties are governed by the local value

of I.. The quantity i = nomax > fiw and the size
of the BEC spatial region/ = [y(29)"/2 > I,. The
parametern = nomaxU/hw, which can be rewritten as
7 =~ (3al}/I>)N,, takes the valud3aNy/lp)?3 and the
maximum condensate densitymax > Né >

We now turn to the BEC in an inhomogeneous field
at a < 0 and discuss the possibility of the formation of
a long-lived metastable gaseous phase. In this case, for
N > 1 and sufficiently low temperature, the thermody-
namic equilibrium corresponds to a condensed phase or
a two-phase system. Usually, the condensed phase for-
mation is a first-order phase transition. The kinetics of
this transition is determined by the formation of con-
densation nuclei with a large number of particles. In a
low-density gas the probability of such a nucleation is
extremely small. Even the formation of dimers, which
can stimulate the nucleation, requires three-body colli-
sions and will be suppressed at sufficiently low density.
The physical picture is dominated by elastic pair colli-
sions. Fora < 0 these collisions prevent the formation
of a Bose condensate with densitiegU| > fw, since
in this (quasihomogeneous) case the structure of trap lev-
FIG. 1. Condensate wave functiop(r) for potential (7). els is essentially smeared out by interatomic interaction,
The parametem = nomaxU/fiw, With nomax = ¥/3(0) being  and there is no gap for the excitation of particles from the
the maximum condensate density. ~Solid curves represeniongensate. It < 0, the excitation is energetically fa-
numerical solutions of Eq. (5) fom10(& = 10hw), n = T - . .
2 = 2.5kw), andn = 0.5(js = 1.7hw). The dashed curve vorable beca}usg the interaction energy per particle in the
corresponds to approximate solution (11) fpr= 10, and the ~condensate ig U, whereas the interaction of the above-
dotted curve to approximate solution (8). condensate particle with the condensate eqajg/.
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where w is the trap frequency. The results fgy(r) at
various values of the parametgrare presented in Fig. 1.
These results show how the structure of the condensa
wave function changes under variations\afor 7.

Wolr) 7 yo(0)
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In the opposite limiting casey <« 1, the pair colli- remainingN; — 2 particles reduces to [cf. Eq. (16)]
sions, as themselves, do not destroy the quasiequilibrium i = 3lal(Ny — 2) (19)

state formed by, atoms accumulated in the ground state .
and the cluster energy decreases by an ameybt|.

of the trapping potential. From Eg. (5) one can find the ) ) -
wave functiony, for this state, which is again close to . Formation of clusters with smallér, and lower energy

Eq. (8). One can also construct a many-particle wavédS Not important as the one-particle wave function in

function which, to first approximation, is a product of one-SUch a cluster should oscillate at distances;, which

particle wave functiong,. Each of these functions is the strongly reduces the trans_ltlon matrix element. The same

wave function of an atom in the self-consistent field cre/éMark can be made with respect to the quaniity

ated by the trapping potential and other particles. (1_6). From the very beginning we could cons!der clusters
It is important that, even in the absence of inelasticVith smaller L, and lower total energy, which would

processes, the considered state is quasistationary. TREMespond to much smaller amplitude of the admixture

attraction between particles enables the existence of & the many-particle wave function than that determined

much more dense state ®f, atoms, with the same total by Eq. (17). o
energyE ~ 0 (E ~ %Noﬁw _ %noNolUl)- For particles For the system as a Whole_,_ the contrlbutlpn 16f-
localized in a spatial region of size,, we have particle clusters to the probability of the transition from

’ the initial state to the states corresponding to the excitation

E = #’No/2mL5 — N§|UI/®7/3)L5.  (12)  of two particles, with the simultaneous decrease of energy
This energy is equal to zero A = Lx, where of the rest of the atoms, is given by
- - N 27, - N
L = 3lalNo ~ lon < Iy, (13) Wi = On, - 7”|U|2f de g(e) 62e — m|U))

and, hence, the dense state is strongly compressed com-
pared to the initial sate of the trapping potential.

There is a large energy barrier between these two
states. From Eq. (12) it follows that, with diminishing
Ly, the energy increases and reaches a maximuby at X
(9/2)|alNo. Denoting the one-particle wave function of
the dense state as«(r), for the overlap integral between
the wave functions of the two states, we obtain

2
X

| s ‘
2(N,—2)

[owdiar| (20)

where¢(r) and¢ (r) are the one-particle wave functions
N in the initial and contracted clusters, respectively. Owing
! 3 l to Eq. (18), we replaced the summation over the final
= 3 ~1_2 20 q ; p
r= (f d rd’O(r)d’*(r)) - { 2N0In L*}' (14) states¢,(r) of the excited particles by the integration,
ticiently | he f in th ¢ with g(e) being the density of states at energy The
For sufficiently largeNy the factor in the exponent of i oyerlap integral in Eq. (20) comes from the transition

Eq. (14) is huge. Since in any case the system will live g,a4iy element of two particles to the excited state For
finite time, one can claim that the considered dense statis integral, we have

will not be formed.
| sins2ats

However, there can be other states coinciding in energy
with the initial state. These are states containing dense
clusters ofV, particles, with wherel, > L, is a linear size of the spatial region in
1 < N < N,. (15)  Wwhich the exited particles are localized. The transitions
! . . . to states with energies; # &,, being included, do not
With No rep_laced le n Eq.. (12), one finds the sizg appreciably change the estimate %}, because in this
or the density at whiclt' ~ 0: case the transition matrix element strongly decreases due
L, = 3|a|N;. (16) to oscillations of the integrand in the overlap integral. The
last factor in Eq. (20) is the overlap integral between the
states ofV; — 2 particles before and after the contraction.
Using Egs. (16) and (19), we obtain

~1/Q2, Q,=4xl3/3, (21)

The many-particle wave function will have an admixture
of states withv, particles localized in a region of the size
L,. The amplitude of the admixture is [cf. Eq. (14)]

Cn, ~ exp{—(3/2)N1In(lo/Ly)}. (17) [ (11 (NdPr = (Li/L1)Y?= (1 — 2/N))*?, (22)

The local density in these clusters, =~ N, /(4w /3)L],

i o6
satisfies the condition and forN; > 1 the last factor in Eqg. (20) reduces4o®.

_ The factorQy, in Eg. (20) accounts for the number of
m|U| > fho, (18)  combinations to seledY; from N, particles. One should

and elastic pair collisions can transfer particles to excite@!SC include the number of possible locations of the dense

) ) : O 3
trap states, with a simultaneous contraction of the rest df/USter in the spatial region of the initial statls/L1)".
the cluster. In a collisional event leading to the excitation! °9€ther with the square of the amplitude (17), we obtain

of two particles, the size of the cluster containing the Oy, = (lo/L1)3PN,, (23)
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wherePy, is equivalent to the Poisson distribution: the BEC transition point, the particles start to accumulate
1 o}/ N, in the ground state of the trap. For the maximum number
Py, = exp—N In[(—) <—>“ 24 of particlesN, still satisfying the conditiorp < 1, the
Ny \/m P[ 1 Ll eN() ( ) p 0 fy g m

rate of inelastic processes will be sufficiently low to allow
For the density of states in a harmonic potential (7) ab metastable Bose condensate. Mf takes the value
e > ho, one hag(e) = £2/2(hw)’. Then, integrating corresponding to the conditiony|U| > #w, then the
overde in Eq. (20), withl, = 2¢/mw?)'/? we find major part of particles will be in the excited states. Only
- —6A7 IF 3 a small fraction will remain in the Bose-condense state,
Wy, = Py, 2e) “NilUI/ Ry @5 e parameter, for this particular fraction being smaller
Equation (25) is valid forV; > 1. But even for rather than unity.
moderate values ol the factor Py, predetermines a  This work was supported by the Dutch Foundation
very long kinetic time: The argument of the logarithm in for Fundamental Research of Matter FOM, by NWO
Eq. (24),(lo/L1)*(N1/eNo) = (No/N1)*/n?, is very large  through Project NWO-07-30-002, by the Project INTAS-
(n <'1). The sum of Eq. (25) oveN, is practically 93-2834, by the International Science foundation, and
determined by the terms with minimum possible value ofRussian Foundation for Basic Studies.
N1, and this does not change the above statement. Note added—After this paper was finished, we got
Thus fornp < 1 the initial state is practically stable at Ref. [11], where, on the basis of time-dependent nonlin-
a < 0 with respect to collapse and “evaporation” inducedear Schrédinger equation for the condensate wave func-
by elastic interaction between particles. This statemengon, the authors found a ground-state solutiorzat 0
is also valid at finite temperatures, since fgr< 1  and made a conclusion on its stability. The physical pic-
characteristic excitation energiesare much larger than ture presented in our paper is completely different. Our
the gas temperature evenlatlose to the BEC transition analysis shows that foz < 0, due to quantum fluctua-
point, and, henceWy, (25) is temperature independent. tions leading to the virtual formation of dense clusters,
The excitation of condensate particles induced by theithere is a large set of states with the same energy for
interaction with above condensate ones can also bfixed Ny. These fluctuations, with subsequent transitions
neglected as the thermal size of the sample greatlgf condensate particles to excited trap states, open the de-
exceedd.;. cay channels of the condensate. For sufficiently small
Let us consider how quantum fluctuations leading tothe characteristic decay time is found to be rather large,
the virtual formation of dense clusters in the consideredhnd it is this result that predetermines the existence of a

initial state of a trapped gas influence the rates ofnetastable Bose-condensed state.
intrinsic inelastic processes. For the process of three-body

recombination the virtual formation of clusters containing
N, atoms gives the recombination rate
3)
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