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Doppler Peaks from Active Perturbations
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We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the
cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced
them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss
how perturbations can be “active” or “passive” and “incoherent” or “coherent,” and show how causality
and scale invariance play rather different roles in these various cases. We find that the existence of
secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic
properties.
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The cosmic microwave background (CMB) promises
become one of the most successful bridges between
ory and experiment in cosmology. As the body of expe
mental data continues to grow [1], theorists are evalua
the impact of these data on the two major paradigms
cosmic structure formation: inflation [2] and topologic
defects [3]. One of the important theoretical tools is t
formalism of Hu and Sugiyama (HS) [4] which we exten
here to accommodate topological defects.

The so-called Doppler peaks, in particular, have
tracted great interest. They consist of a system of osc
tions, known to be present for most inflationary models
the CMB angular power spectrumCl at 100 , l , 1500.
The peaks’ height and position can be used to fix w
some accuracy combinations of parameters left free in
flationary models [5]. Progress on defect Doppler pe
predictions has been slow (see, however, [6–8]). It w
suggested in [8] that, regardless of the remaining qu
titative uncertainties, one could expect dramatic qual
tive differences between defect and inflationary Dopp
peaks. More concretely, it was pointed out that the non
istence of secondary peaks is a robust feature of some
fect theories resulting from the different role played
randomness and causality in these theories. In this Le
we elaborate on how general this feature is, and pin do
its controlling factors.

The idea is to focus on the basic assumptions of in
tionary and defect theories, isolate the seminal contras
properties, and perform a qualitative analysis of the str
ture of the Doppler peaks based purely on these pro
ties. Inflationary fluctuations were produced at a rem
epoch, and were driven far outside the Hubble radius
inflation. The evolution of these fluctuations is linear (u
til gravitational collapse becomes nonlinear at late time
and we call these fluctuations “passive.” Also, beca
all scales observed today have been in causal contact s
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the onset of inflation, causality does not strongly constr
the fluctuations which result. In contrast, defect fluctu
tions are continuously seeded by defect evolution, wh
is a nonlinear process. We therefore say these are “act
perturbations. Also, the constraints imposed by causa
on defect formation and evolution are much greater th
those placed on inflationary perturbations.

The notions of scale invariance and causality have d
ferent implications in these two types of theory. A sca
invariant gauge-invariant potentialF (the Newtonian po-
tential on subhorizon scales) with dimensionsL3y2 has
a power spectrumPsFd ­ kjFkj2l ~ k23 in passive theo-
ries (the Harrison-Zeldovich spectrum). In active theori
the most general counterpart to the Harrison-Zeldov
spectrum isPsFd ­ h3FFskhd. Moreover, active pertur-
bations are constrained by causality, in the form of i
tegral constraints [9,10], such as those written in ter
of the gauge dependent energy-momentum pseudote
of [11,12]. In [13] we show that the density subje
to the integral constraint can be written in the gaug
invariant formU ­ a2rDT 1 rs 1 3hys. Here,a is the
scale factor,h ­ Ùaya, rsDT d is the total matter density
(density contrast), and the scalar defect stress-energy
sor is given byQ00 ­ rs, Q0i ­ kiy

s, andQij ­ psdij 1

skikj 2 k2dijy3dPs. Then following [14], on superhori-
zon scalesPsU d ~ k4 for active perturbations. The Ein
stein equations for the potentialsF andC are [15,16]

k2F ­ 4psa2rDT 1 rs 1 3hysd , (1)

F 1 C ­ 28p

µ
a2 pP

k2
1 Ps

∂
. (2)

Since isotropy requiresPs and pPyk2 (where pPyk2

is simply related to the quadrupole of the photon a
neutrino fluctuations) to be constant for smallk, the
Einstein equations imply that scaling active perturbatio
produce scaling gauge-invariant potentials, which m
© 1996 The American Physical Society 2617
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be white noise on large scales. In particular,PsC 2

Fd ­ Fskhdh3, with Fs0d a nonzero constant. For mo
realistic defects,x4Fsxd will then have a single peak
located at a value ofx close to the location of the peak o
the defect compensated structure function [17]. We w
see that the place and thickness of the peak inx4Fsxd are
deciding features for the Doppler peaks induced by ac
perturbations [18].

Active perturbations may also differ from inflation i
the way “chance” comes into the theory. Randomn
occurs in inflation only when the initial conditions are s
up. Time evolution is linear and deterministic, and m
be found by evolving all variables from an initial valu
equal to the square root of their initial variances. B
squaring the result one obtains the variables’ varian
at any time. Formally, this results from unequal tim
correlators of the form

kFs $k, hdFs $k0, h0dl ­ ds$k 2 $k0dssssFsk, hddddssssFsk, h0dddd ,

(3)

wheres denotes the square root of the power spectr
P. In defect models, however, randomness may interv
in the time evolution as well as the initial condition
Although deterministic in principle, the defect netwo
evolves as a result of a complicated nonlinear proc
If there is strong nonlinearity, a given mode will b
“driven” by interactions with the other modes in a wa
which will force all different-time correlators to zero on
time scale characterized by the “coherence time”tcsk, hd.
Physically, this means that one has to perform a n
“random” draw after each coherence time in order
construct a defect history [8]. The counterpart to (3)
incoherent perturbations is

kFs $k, hdFs $k0, h0dl ­ ds$k 2 $k0dPsssFsk, hd, h0 2 hddd . (4)

For jh0 2 hj ; jDhj . tcsk, hd we have
PsssFsk, hd, Dhddd ­ 0. When convolvingPsssFsk, hd, Dhddd
with functions which vary slowly at the scale oftcsk, hd
we may implement an approximation, where

kFs $k, hdFs $k0, h0dl ­ ds$k 2 $k0ddsh 2 h0dPrsssFsk, hdddd ,

(5)

in which

Pr sssFsk, hdddd ­
Z

dDhPsssFsk, hd, Dhddd (6)

is the time-integrated power spectrum [17]. We shall
bel as coherent and incoherent the perturbations satisf
(3) and (5), respectively. This feature changes the w
the averageCl are computed, resulting in a striking qua
itative difference in the structure of Doppler peaks. W
expect that Eqs. (3) and (5) will be only rough approxim
tions for some defect cases but still allow some intuiti
to be gained.

A large class of theories is embraced by combinatio
of the two concepts just introduced. Inflationary perturb
2618
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tions are passive coherent perturbations. Defect pertu
tions are active perturbations more or less incoherent,
pending on the defect. We will submit this class of theor
to the computational machinery of Hu and Sugiyama [
which was initially tailored for passive coherent perturb
tions. We consider the limit whereV ­ 1 andVb ­ 0 (or
rather, we shall ignore changes in the photon-baryon so
speed before last scattering). Generalization is straight
ward from HS. Whereas primordial terms are domina
for passive perturbations, for active perturbations one m
drop all but the convolution terms. The radiation brigh
ness multipoles at epochh0 (h0 . hp, the epoch of de-
coupling) are then given by

Qlsk, h0d ­
Z hp

0
dh ksF 2 Cd fDlshd 1 V lshdg

1 fsC 2 FdAlg shpd 1
Z h0

hp

dh s ÙC 2 ÙFdAlshd , (7)

with Alshd ­ s2l 1 1djlsdxd [where dx ­ ksh0 2 hd],
and the projected monopole and dipole contributions a

Dlsk, hd ­
s2l 1 1djlsdxd

p
3

sinDx,

V lsk, hd ­ fsl 1 1djl11sdxd 2 ljl21sdxdg cosDx ,

whereDx ­ kshp 2 hdy
p

3. The averageCl are com-
puted in HS assuming (3). For incoherent perturbatio
instead, theCl ’s are made up of terms of the form

Cl
1 ­ p2

Z
dk

Z hp

0
dh k4Pr sF 2 Cd

√
Dl 1 V l

2l 1 1

!2

,

resulting from squaring and averaging (7) using statist
as in (5). These generalizations, together with the ac
perturbations’ gauge-invariant potentials, allow a syste
atic extension of the HS formalism to the defect case.

We first undertake a preliminary analysis by examini
the power spectrum of the radiation energy dens
(the monopole termQ0 1 C) at last scattering. This
should mimic the Doppler peaks’ qualitative structur
As in [4], we have for adiabatic and isocurvature pass
fluctuations the following:

k3PsQ0 1 Cd shpd øk3PsQ0 1 Cd s0d cos2xp, (8)

k3PsQ0 1 Cd shpd øk3PsQ0 1 Cd s0dsin2xp, (9)

in which xp ­ khpy
p

3. The peaks of the spectrum ar
at the scalesxp

m ­ mp for adiabatic, andxp
m ­ sm 2

1y2dp for isocurvature perturbations. These correspo
roughly to the angular scalelm ø xp

mh0. For coherent
active perturbations,k3PsQ0 1 Cdshpd is approximately"

1
p

3

Z p
3xp

0
dx x3y2F1y2sxd sin

√
xp 2

x
p

3

!

2 xp3y2F1y2sxpd

#2

,

whereas for incoherent perturbations one has

xp3Fsxpd 1
1
3

Z p
3xp

0
dx x4Fsxd sin2

µ
xp 2

x
p

3

∂
,
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where PsF 2 Cd ­ h3Fsxd [or PrsF 2 Cd ­ h4Fsxd],
with x ­ kh. These show that the position and stru
ture of active perturbation Doppler peaks result from
combination of the issue of coherence and the deta
of the potential structure functionFsxd. If x4Fsxd has
a sufficiently thin peak atx ­ xc ; 2phyjc (where jc

is approximately the coherence length of the defec
then the monopole spectrum peaks will be atxp

m ­ sm 2

1y2dp 1 xcy
p

3 for both coherent and incoherent fluctua
tions. Then active perturbations just apply a phase sh
of valuexcy

p
3 2 py2 to an adiabatic type of spectrum.

For xc ø 2.7 (unrealistic because it is very close t
the smallest turnover point allowed by causality [10]) th
monopole peaks are at the adiabatic positions. For
other causal active perturbations the peaks are shifted
smaller scales. Forxc ø 5.4 they are out of phase with the
adiabatic peaks (as in [6]). Forxc . 8.5 the peaks start
only in the adiabatic secondary peaks region. For stand
values ofVb andh these three cases would place the ma
“Doppler peak” atl ø 230, 350, and 500, respectively.
Therefore the placing of the peaks isnot a generic feature
of active fluctuations. Active perturbations simply add a
extra parameter on which the Doppler peaks position
strongly dependent. In general, we should expect that
the sameV, Vb , andh, active perturbations will take the
predicted cold dark matter (CDM) adiabatic peak positio
l to l 1 sh0yhpd sxc 2 p

p
3y2d. The secondary peaks

separation is not changed, in a first approximation. Th
is to be contrasted with nonflat inflationary models, whe
ClsV ­ 1d is taken intoClV1y2 . Thus it should be possible
to distinguish between low-V CDM and V ­ 1 high-xc

defects.
For largexc the peak inx4Fsxd can never be thin. Then

each mode is active for several expansion times, bring
coherence into play. Qualitative changes come about
the secondary peaks, but our conclusions relating to
primary peak still hold. In Fig. 1 we consider cohere
perturbations with realistic structure functions. One m
obtain passive type of peaks at adiabatic and isocurvat
positions. Forxc . 9 there are strong distortions. On
must, however, realize that effective coherence for lar
xc requires actual coherence over several (more thanxc)
expansion times, perhaps an unreasonable demand.

The situation for incoherent oscillations is illustrated
Fig. 2. Although there are never true zeros inPsQ0 1

Cdsxpd, it is possible to obtain significant oscillations i
the main peak is at the adiabatic position. However, the
disappear very quickly as the main peak approaches
isocurvature position. Hence, largexc defects can always
be expected to produce exoticCl spectra, as suggested i
[8]. Coherence intervenes in deciding how largexc must
be for this to happen, as well as what type of novelty
introduced.

Besides this qualitative general analysis, the e
tended HS formalism allows for an approximate solutio
s5 10d% for the Cl ’s of any particular defect model.
The calculation errors are, in practice, dominated
-
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FIG. 1. Three potential structure functionsFsxdx4 and their
corresponding spectrak3PsQ0 1 Cdshpd assuming coherence
By increasingxc one moves from adiabatic peaks (line) t
isocurvature peaks (dashed). For largerxc the secondary peaks
come out significantly distorted (dot-dashed).

uncertainties in the defect stress-energy tensor. We ill
trate the procedure with the example of cosmic strin
For these we use the incoherent form withPrs rsd ­

FIG. 2. Thek3PsQ0 1 Cdshpd spectrum for coherent (line)
and incoherent (dashed) active perturbations with the first t
structure functions used in Fig. 1. One may obtain (soft
secondary oscillations at the adiabatic position for incoher
perturbations. As the spectrum shifts to the right (largerxc),
the secondary oscillations disappear very quickly.
2619
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FIG. 3. TheCl spectrum for I (dashed) and X (line) cosm
strings. The top lines uses ­ 0.1, s ­ 0.4 for X strings ands ­
0.15, s ­ 0.45 for I strings. The bottom lines both uses ­ 0.2,
s ­ 0.5. We have assumedV ­ 1, h ­ 0.5, andVb ­ 0.05.

1yf1 1 2sbxd2g (from [17]). We consider the two case
b ­ 1 andb ­ 0.3 similar to the X and I models in [17]
We consider only scalar contributions. We assume t
the defect variables are subject to equations of state o
form ps ­ gsxdrs, Ps ­ h2gssxdrs, andys ­ hgysxdrs.
Energy conservation at smallx requires that3gs0d ­ s1y
2ad 2 1 and gys0d ­ s1 2 2adyf3as4a 1 1dg, with a ­
hh. We make use of a string simulation to dete
mine the largex behavior [13]. We find, with large
uncertainties, thatxgysxd ­ s ø 0.1 0.3, and x2gssxd ­
s ø 0.4 0.55. We interpolate between thex ¿ 1 and
x ø 1 behavior. We setP ­ 0 and assume thata2rDT

is subdominant except for the compensation. This c
sists of a white noise large-scale tail in the spectrum
a2rDT , present in order to cancel the white-noise t
in rs 1 3hys and ensure thatPsa2rDT 1 rs 1 3hysd
varies ask4. We take the compensation into account
hand, setting a2rDT 1 rs 1 3hys ­ gcs rs 1 3hysd
with gc ­ 1yf1 1 sayxd2g. We fix the compensation
scale ata ­ 2p. Using (1) and (2), we finally obtain th
required cosmic strings potential structure functions to
inserted in the HS formalism as modified for incohere
perturbations. The results are plotted in Fig. 3. T
Sachs-Wolfe plateau exhibits a “running” tilt rangin
from n ø 1.4 beforel ­ 10 to n ø 1.2 at 30 40. There
is a single Doppler bump located atl ø 400 600. These
features are remarkably robust against uncertainties in
equations of state. The ratio between the peak and
plateau heights, on the other hand, can change by as m
as an order of magnitude.

In general, we find that features of theCl spectrum sug-
gested by the monopole spectrum at decoupling are c
2620
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firmed. Generic defects place the main peak to the righ
the CDM adiabatic peak. Coherent defects exhibit shif
CDM-type secondary oscillations up to the isocurvatu
positions (which are easily distinguished from the shi
associated with varyingV). From then on, coherent de
fects show a peculiar type of secondary oscillations. In
herent defects erase the secondary oscillations if the m
peak is placed on or to the right of the isocurvature p
sition. Thus the most dramatic effects occur for largexc

defects (such as cosmic strings), where theCl spectrum
shape at100 , l , 1500 is radically different according to
the active/passive, and coherent/incoherent nature of
perturbations. The signature becomes progressively
prominent asxc is pushed to the lower limit imposed b
causality.
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