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We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the
cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced
them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss
how perturbations can be “active” or “passive” and “incoherent” or “coherent,” and show how causality
and scale invariance play rather different roles in these various cases. We find that the existence of
secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic
properties.
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The cosmic microwave background (CMB) promises tothe onset of inflation, causality does not strongly constrain
become one of the most successful bridges between th&e fluctuations which result. In contrast, defect fluctua-
ory and experiment in cosmology. As the body of experi-tions are continuously seeded by defect evolution, which
mental data continues to grow [1], theorists are evaluatings a nonlinear process. We therefore say these are “active”
the impact of these data on the two major paradigms foperturbations. Also, the constraints imposed by causality
cosmic structure formation: inflation [2] and topological on defect formation and evolution are much greater than
defects [3]. One of the important theoretical tools is thethose placed on inflationary perturbations.
formalism of Hu and Sugiyama (HS) [4] which we extend The notions of scale invariance and causality have dif-
here to accommodate topological defects. ferent implications in these two types of theory. A scale

The so-called Doppler peaks, in particular, have atinvariant gauge-invariant potentidl (the Newtonian po-
tracted great interest. They consist of a system of oscillatential on subhorizon scales) with dimensioh¥? has
tions, known to be present for most inflationary models, ina power spectrun® (®) = {|®y|>) « k3 in passive theo-
the CMB angular power spectrud at 100 << 1500. ries (the Harrison-Zeldovich spectrum). In active theories
The peaks’ height and position can be used to fix withthe most general counterpart to the Harrison-Zeldovich
some accuracy combinations of parameters left free in inspectrum isP(®) = n°Fq¢ (k7). Moreover, active pertur-
flationary models [5]. Progress on defect Doppler pealbations are constrained by causality, in the form of in-
predictions has been slow (see, however, [6—8]). It wasegral constraints [9,10], such as those written in terms
suggested in [8] that, regardless of the remaining quamef the gauge dependent energy-momentum pseudotensor
titative uncertainties, one could expect dramatic qualitaef [11,12]. In [13] we show that the density subject
tive differences between defect and inflationary Doppleto the integral constraint can be written in the gauge-
peaks. More concretely, it was pointed out that the nonexinvariant formU = a’pAr + p* + 3hv*. Here,a is the
istence of secondary peaks is a robust feature of some dseale factor,i =a/a, p(Ar) is the total matter density
fect theories resulting from the different role played by(density contrast), and the scalar defect stress-energy ten-
randomness and causality in these theories. In this Lettesor is given by®g = p*, Op; = k;v*, and®;; = p*5;; +
we elaborate on how general this feature is, and pin dowik;k; — k>8;;/3)I1°. Then following [14], on superhori-

its controlling factors. zon scalesP(‘U) = k* for active perturbations. The Ein-
The idea is to focus on the basic assumptions of inflastein equations for the potentials and¥ are [15,16]

tionary and defect theories, isolate the seminal contrasting K® = 4m(a’pAr + p* + 3hv'), 1)

properties, and perform a qualitative analysis of the struc-

ture of the Doppler peaks based purely on these proper- d+ V= _8W(azﬂ + Hs>. )

ties. Inflationary fluctuations were produced at a remote k2

epoch, and were driven far outside the Hubble radius byince isotropy require$l* and pIl/k?> (where pIl/k?
inflation. The evolution of these fluctuations is linear (un-is simply related to the quadrupole of the photon and
til gravitational collapse becomes nonlinear at late times)neutrino fluctuations) to be constant for small the
and we call these fluctuations “passive.” Also, becaus&instein equations imply that scaling active perturbations
all scales observed today have been in causal contact sinpeoduce scaling gauge-invariant potentials, which must
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be white noise on large scales. In particul®&(¥ — tions are passive coherent perturbations. Defect perturba-

®) = F(kn)n?, with F(0) a nonzero constant. For most tions are active perturbations more or less incoherent, de-

realistic defectsx*F(x) will then have a single peak pending on the defect. We will submit this class of theories

located at a value of close to the location of the peak of to the computational machinery of Hu and Sugiyama [4],

the defect compensated structure function [17]. We willwhich was initially tailored for passive coherent perturba-

see that the place and thickness of the peak'ifi(x) are  tions. We consider the limit whet® = 1 andQ, =0 (or

deciding features for the Doppler peaks induced by activeather, we shall ignore changes in the photon-baryon sound

perturbations [18]. speed before last scattering). Generalization is straightfor-
Active perturbations may also differ from inflation in ward from HS. Whereas primordial terms are dominant

the way “chance” comes into the theory. Randomnes$or passive perturbations, for active perturbations one may

occurs in inflation only when the initial conditions are setdrop all but the convolution terms. The radiation bright-

up. Time evolution is linear and deterministic, and mayness multipoles at epochy (1o > 7", the epoch of de-

be found by evolving all variables from an initial value coupling) are then given by

equal to the square root of their initial variances. By UN

squaring the result one obtains the variables’ variances®'(k, 7o) = ] dn k(® — W)[D'(n) + V'(n)]

at any time. Formally, this results from unequal time 0

1o . .
correlators of the form + [(¥ = ®)A'](n") + [ dn (¥ — ®)A' (), (7)
-

(@&, MK, 7)) = 8k — K)o (@, M@K, 1),  with Al(n) = (21 + 1)ju(8x) [where 8x = k(no — 1)].
(3) and the projected monopole and dipole contributions are

_ @1+ i)

where o denotes the square root of the power spectrum  p!(k, ) inAx,

P. In defect models, however, randomness may intervene V3
in the time evolution as well as the initial conditions.  vi(k,n) =[(I + 1)j;+1(8x) — 1j;—1(8x)]cosAx,

Although deterministic in pr|nC|pIe, the defect network whereAx = k(n* — 1)/+/3. The average”! are com-
evolves as a result of a complicated nonlinear process;

; ; . : . puted in HS assuming (3). For incoherent perturbations,
If there is strong nonlinearity, a given mode will be : I
o ; . . . instead, theC'’s are made up of terms of the form
driven” by interactions with the other modes in a way o . N2
which will force all different-time correlators to zeroona 1 _ 772[ dkf an kP (@ — w2V
time scale characterized by the “coherence timgk, 7). 0 21 + 1

Physically, this means that one has to perform a neWegyliing from squaring and averaging (7) using statistics
‘random” draw after each coherence time in order toy5 iy (5). These generalizations, together with the active
construct a defect history [8]. The counterpart to (3) forperturhations’ gauge-invariant potentials, allow a system-
incoherent perturbations is atic extension of the HS formalism to the defect case.
> N a7 / We first undertake a preliminary analysis by examining
(@, MO, 7))y =8k = k)P(P (K, 7). n" = n). (4) the power spectrum of the radiation energy density
For |n' = nl = |An| > 7.k, n) we have (the monopole term®, + W) at last scattering. This
P(®(k,n),An) = 0. When convolvingP(®(k,n),An)  should mimic the Doppler peaks’ qualitative structure.
with functions which vary slowly at the scale of(k,n)  As in [4], we have for adiabatic and isocurvature passive

we may implement an approximation, where fluctuations the following:

@k, M@K, 1) = 8k — KN8(n — 7 )P (@(k, 1)), K'P(Og + W) (n") =k’P(Oy + W) (0)cosx™,  (8)
(5) BP(O) + W) (1) =k°P(®) + ¥)(0)sirx*,  (9)

in which in which x* = kn*/+/3. The peaks of the spectrum are

at the scalest,, = m7 for adiabatic, andx,, = (m —
P (P(k,7m)) = f dAnP(P(k,m),An) (6) 1/2)w for isocurvature perturbations. These correspond
roughly to the angular scalg, = x;, n9. For coherent
is the time-integrated power spectrum [17]. We shall laactive perturbations;>P(®, + W)(n*) is approximately
bel as coherent and incoherent the perturbations satisfyin VAt
(3) and (5), respectively. This feature changes the way| — f dx x**F'2(x) sin<x* - i)
the average”! are computed, resulting in a striking qual- V3 Jo V3
itative difference in the structure of Doppler peaks. We 3212
expect that Egs. (3) and (5) will be only rough approxima- SN
tions for some defect cases but still allow some intuitio
to be gained. A
A large class of theories is embraced by combinations . 1 v . .
of the two concepts just introduced. Inflationary perturba- % )+ S f dx x*F (x) S'n2<x -
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where P(® — W) =93F(x) [or P"(® —W¥)=n*F(x)], e
with x =k7n. These show that the position and struc-
ture of active perturbation Doppler peaks result from a
combination of the issue of coherence and the detail:
of the potential structure functiof(x). If x*F(x) has
a sufficiently thin peak ak =x.=2wn/&. (Where &. N
is approximately the coherence length of the defect)
then the monopole spectrum peaks will bexgt= (m — I
1/2)7 + x./+/3 for both coherent and incoherent fluctua- °
tions. Then active perturbations just apply a phase shif
of valuex,./+/3 — 7/2 to an adiabatic type of spectrum. 1000 g
For x. = 2.7 (unrealistic because it is very close to & 1oL
the smallest turnover point allowed by causality [10]) the§ i
monopole peaks are at the adiabatic positions. For al+ :
other causal active perturbations the peaks are shifted i&  1:
smaller scales. For. = 5.4 they are out of phase with the & g
adiabatic peaks (as in [6]). Fat. > 8.5 the peaks start 3
only in the adiabatic secondary peaks region. For standar oot g
values of(), andh these three cases would place the main
“Doppler peak” at/ =230, 350, and 500, respectively.
Therefore the placing of the peaksrist a generic feature
of active fluctuations. Active perturbations simply add anFIG. 1. Three potential structure functio¥x)x* and their
extra parameter on which the Doppler peaks position igorrﬁiﬁgggfﬂg Spgﬁ‘f i (()g)é);frg’r?q(ﬂ;éi;‘;zld?i”gai‘;h%ﬁgﬁb
x(‘
strongly dependent. In ge_neral, we Sh.OU|d e?‘peCt that foE:,)c/)curvature ?)eaks (dashed). For largethe secF:)ondary peaks
the §amd), Q,, andh, active perturbgtlons will take th? come out significantly distorted (dot-dashed).
predicted cold dark matter (CDM) adiabatic peak position
[ to 1+ (mo/n*) (x. — m/3/2). The secondary peaks’
separation is not changed, in a first approximation. Thigincertainties in the defect stress-energy tensor. We illus-
is to be contrasted with nonflat inflationary models, wherdrate the procedure with the example of cosmic strings.
C;(Q =1) is taken intoC;1~. Thus it should be possible For these we use the incoherent form witti(p*) =
to distinguish between low@ CDM and 2 =1 high-x,
defects. T
For largex. the peak inc*F(x) can never be thin. Then
each mode is active for several expansion times, bringin¢~
coherence into play. Qualitative changes come about ir=
the secondary peaks, but our conclusions relating to th¢3 i
primary peak still hold. In Fig. 1 we consider coherent & 001t
perturbations with realistic structure functions. One mayg& |
obtain passive type of peaks at adiabatic and isocurvatur
positions. Forx, > 9 there are strong distortions. One
must, however, realize that effective coherence for large
X. requires actual coherence over several (more than 00001
expansion times, perhaps an unreasonable demand. i
The situation for incoherent oscillations is illustrated in
Fig. 2. Although there are never true zerosH(®, +
) (x*), it is possible to obtain significant oscillations if
the main peak is at the adiabatic position. However, thes-
disappear very quickly as the main peak approaches thé‘o_o01 I
isocurvature position. Hence, largge defects can always ;
be expected to produce exofit* spectra, as suggested in
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[8]. Coherence intervenes in deciding how langemust 05 1 ., 5 10
be for this to happen, as well as what type of novelty is *
introduced. FIG. 2. Thek’P(®, + ¥)(n*) spectrum for coherent (line)

; ; P ; and incoherent (dashed) active perturbations with the first two
Besides this qualitative general analysis, the SXstructure functions used in Fig. 1. One may obtain (softer)

tended HS formalism allows for an approximate SOIUt'Onsecondary oscillations at the adiabatic position for incoherent

(5-10)% for the C"'s of any particular defect model. perturbations. As the spectrum shifts to the right (larger
The calculation errors are, in practice, dominated byhe secondary oscillations disappear very quickly.
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100 1 T T ] firmed. Generic defects place the main peak to the right of

- ] the CDM adiabatic peak. Coherent defects exhibit shifted
CDM-type secondary oscillations up to the isocurvature
positions (which are easily distinguished from the shifts
associated with varying)). From then on, coherent de-
fects show a peculiar type of secondary oscillations. Inco-
herent defects erase the secondary oscillations if the main
peak is placed on or to the right of the isocurvature po-
sition. Thus the most dramatic effects occur for laxge
defects (such as cosmic strings), where €Hespectrum
shape at 00 <! < 1500 is radically different according to
the active/passive, and coherent/incoherent nature of the
perturbations. The signature becomes progressively less
prominent asy. is pushed to the lower limit imposed by
causality.
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