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Monte Carlo Renormalization of the 3D Ising Model: Analyticity and Convergence
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We review the assumptions on which the Monte Carlo renormalization technique is based, in
particular, the analyticity of the block-spin transformations. On this basis, we select an optimized
Kadanoff blocking rule in combination with the simulation ofda= 3 Ising model with reduced
corrections to scaling. This is achieved by including interactions with second and third neighbors.
As a consequence of the improved transformation, this Monte Carlo renormalization method yields a
fast convergence and a high accuracy. The results for the critical exponentg are2.481(1) and
yr = 1.585(3).

PACS numbers: 05.50.+q, 02.70.Lq, 75.10.Hk, 75.40.Mg

Applications of the Monte Carlo renormalization group and
(MCRG) to the three-dimensional Ising model [1-4] have ;
become increasingly elaborate and complicated, and tend ng = (SeSp) = ((Se = (2D (Sg = (Sp)).  (3)
to require considerable computer resources. Neverthelesppese |attice sum correlations are related [8] to the
there are still uncertainties due to the basic assumptiongearized transformation
underlying the renormalization transformations used. In
particular, we will focus on the question concerning the Top = aKg/aKﬁ 4
analyticity of the transformation, which may be related to .
the question whether the corrections to scaling vanish af'a
the fixed point of the trar_lsformation [5]. In this Letter we BuyTyp = Cup . (5)
first calculate the analytic part of a divergent observable;
this demonstrates that gross nonanalyticities are normaliyhe dummy index summation rule applies to Greek
absent. However, in general we may expect weak nonan#?dices. The matriXl' is approximated by solving Eq. (5)
lyticities due to corrections to scaling. Thus, second, weafter truncation to a finite number of couplings. Under
minimize their effects by adjusting the transformation agteration of the block-spin transformation, tkg, (a > 0)
well as the Hamiltonian that is simulated. are assumed to approach a critical fixed point, where the
The MCRG method has amply been reviewed [6,7], ancigenvalues o' determine the critical exponents.
here we only briefly outline the method. The reduced Thus, the MCRG method relies on assumptions of

Hamiltonian is written as (1) analyticity of the transformation, (2) convergence with
© the dimensionality of the coupling subspace, and (3) con-
H (Ko, K1, Kz, ... S) = — Z K,S., . (1)  Vvergence to a critical fixed point.
=0 Concerning the third assumption, numerical work in-

volving several subsequent transformations [2—4] suggests
gthat convergence to a fixed point does occur, and is de-
scribed by an irrelevant exponept in the range—0.8
to —1.0.

In order to investigate the second assumption, the num-
ber of couplingsn,. used in the analyses has increased

where S is a spin configuration, th&, are couplings,
and theS, are the conjugate lattice sums over spin pro
ucts, e.g.K; is the magnetic field ansl; = > ; s; the sum
over all spins;K; is the nearest-neighbor coupling and
S> = Dy sis; the sum over all nearest-neighbor pairs

(si,sj). A special “coupling” is the background energy X . 4 )
density Ko: S, is the number of spins. Application of a considerably over the years; from 7 in Ref. [1] to 99 in
Ref. [4]. A criterion to distinguish “important” and “less

block-spin transformation to Monte Carlo generated con: ., i introduced | f h
figurations S leads to configurations’ described by a Mmportant” couplings was introduced in Ref. [3]. The
Hamiltonian ' = 3 (K}, K|, K}, ...;S'). The renor- importance index 'of ann-spin Coqpllng is given by

malized couplingsk!, are assumedo be analytic func- (227)"!, where7 is the average distance between the

tions of the original ones, even at the infinite Systemspins. This formula accounts for the facts that couplings

critical point. However, this property remains unproventenOI to become_le_ss important when more spins are n-
in general, even ok, or the so-called “analytic part’ of voIve_d _and wherr increases [9]. An ordering accordlng_
the transformation to this index leads to fast apparent convergence [3] with

It is straightforward to calculate, using the Monte CarloNcréasing:.. On this basis we have restricted the present
method, calculations to 20 even and 15 odd couplings, and indeed
(_) we observe good convergence with for all results pre-

Bap = ((S,Sp)) = (St — (SL)(Sp — (Sp))  (2)  sented here.
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Next, we search for nonanalyticities in the “analytic” T - T — ~
part of the transformation when applied to an infinite sys- 44000
tem. First we investigate if the analytic parts of the sus-
ceptibility and the specific heat of the nearest-neighbo
model, which are proportional t@y;; and Ty,,, respec-
tively, are bounded at criticality. We express these quan

tities in derivatives of I@ and apply the chain rule: 1000 E
9?InZ 9 dInz
= Tyﬁ A11
IKo,0Kg 0K, K/,
alnz 0%Inz
=T (6) 100 E

T T ) T

whereT,,pg = 0T,3/9dK,. The derivatives of |1&@ can
trivially be expressed in connected lattice sum correlations

<<SaS,B>> = Tyoz,B<Sg/> + Tyﬁ<<SaS;>>- (7)

TheT,,p are the only unknowns in Eq. (7); the correla-
tions follow from the simulation, and th&, s from the _ ) _
standard MCRG analysis. There are not enough equaE'G- 1. The quantityA;; defined in the text vs the block-

. .. spin parametew for finite sizesL = 8 (), L = 16 (A), and
tions to solve forTy,,,, but we can calculate the quantity Lp= 392 (O). The lines are guides t(o 2[he eve. (Si)gns of a

Apm = L7 Tyun(S},), in which the effect of a possible givergence withl. appear only for smali.

divergence ofTy,,,, vanishes only in the case of unlikely

cancellations. The factdr 3 normalizesS’, with respect

to the system sizé. [5]. But do they really vanish? This seems doubtful, in

We have done such calculations using ther [10,11],  particular, when the transformation contafree parame-

a special-purpose computer for Metropolis simulationgers which move the fixed point over the critical surface
of Ising models. The transformation is defined by theSince the irrelevant fields are absent at a fixed point, any
probability P(s’) of a block spins’: P(s’) = explws’s,)/  corrections should be due to some other mechanism. Weak
2 cosl{wsy,), wheres, is the sum of the spins in @  singularities associated with corrections to scaling could
block. It approaches the majority rule for large In  enter into the renormalized Hamiltonian via a weak non-
the limit of smallw, the block spins become independentanalyticity of the transformation.

and the critical singularity moves to the analytic part

[12]. Numerical results foA; and A,, did not suggest

divergences in the analytic parts of the susceptibility, 1000 — - - — F
except where expected: for small Figure 1 shows the
numerical results for|; as a function ofw for L = 8,

16, and 32.

A stricter test uses an explicit calculation @,,,. Toze
We apply the chain rule to the second differentiation in
9*InZ/9K,d0KpgdK!, and express the derivatives ofzn
again in connected lattice sum correlations:

(SaSpSyN = Toapl(SyS5)) + Tsp{(SaSySs)). (8)

Choosinga = B8 = m one can solve the unknows,,,,,
(6 > 0) from the numerical data, and thus isolate the term
with Ty, in Eg. (7). No signs of divergences are seen in
the analytic part of the specific heat, except for smasll
as illustrated in Fig. 2. 10 L ‘ :

These results are gratifying, but the transformation may 00 02 0'4(0 *
still be weakly singular at the infinite system critical point, i o )
or even ill defined [13]. Such problems may be expected if |G: 2. The quantity Ty, which is proportional to the

. . . - .—.analytic part of the specific heat, vs the block-spin parameter

the block-spin transformation fails to lead to a fixed point “t5; finite sizess. — 8 @), L =16 (A), and L = 32 (O).
where the usual corrections to scaling vanish. They shoulghe Jines are guides to the eye. Signs of a divergence ith
vanish at the fixed point of a well-behaved transformatiorappear only for smalb.

10 +

100 |
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In order to suppress this problem in MCRG, we propose 1.65 ' -
the following strategy, which is applicable in a more gen-
eral context than the Ising model: (1) The Hamiltonian
used to generate the Monte Carlo configurations is cho- 1.60 | 1
sen such that the corrections to scaling are small. (2) The [T e @ - ommrmmmomoe — oo
transformation is chosen such that the fixed point is close to &,
the Hamiltonian mentioned. To this purpose we included, 1.85 | ‘@E\ ]
in addition to nearest-neighbor couplings = K,,, sec- vr
ond and third neighbor couplings,, andKs,, in the Monte \%
Carlo simulation [14], and optimized the ratio between the 150 | 1
couplings, and the block-spin parameter
First we used a Monte Carlo Hamiltonian wikh,, = 0
and K3, /K., = 0.4, for which the corrections to scaling 145 ¢ ]
are small [15,16]. Then the convergence to the fixed point, \%
as apparent from the MCRG results for the eigenvalues of
T,p, becomes optimal fow = 0.4. This is close to a 140 %0 0.25 050

variational value found by Kadanoff, Houghton, and Yal-

abik [17]. The difference between the Monte Carlo andgig 3. The convergence of the temperature exponent
the fixed-point Hamiltonian follows, in a linear approxi- with increasing number of iterationsa of the block-spin

mation [2,6], from the difference betweg&f,) and(S.,)

transformation.

Results are shown for the present MCRG

as determined from separate simulations of systems witi§alculations @) and for those reported in Ref. [3[Y).

compatible sizes. This calculation was done in the cou-
pling subspacék,,, K»,, K3,,).

A second approximation of the = 0.4 fixed point
was found by using a Monte Carlo Hamiltonian close
to the first approximation. The fixed point was thus
estimated (K, K2, K3,) = (0.1109,0.03308,0.014 02).

A finite-size scaling analysis of Monte Carlo results [15]
was used to determine the critical point more accurately:
(Knn> K2n, K3,) = (0.1114448,0.0332520,0.0140925),
with a relative accuracy oR X 107°. This analysis
showed that the corrections to scaling in the Binder
cumulant [18] are about 6 times smaller than for the
nearest-neighbor Hamiltonian.

The bulk of the MCRG calculations took place at the
estimated critical point, using system sizeés= 32, 16,

Ref. [2].

eigenvalues of thel,g matrix. Statistical errors were
found by dividing the runs in 50 subruns.
and renormalization (approach of the fixed point) effects
were determined with the procedures described, e.g., in
The convergence ofr and yy vs 27" is,
after correction for the finite-size effect, shown in Figs. 3
‘and 4. For comparison we include results from Ref. [3],
which used the standard nearest-neighbor Hamiltonian
and the majority rule. Extrapolation of the data for=
32 yields our final estimates for the critical exponents:
yu = 2.481(1) andyr = 1.585(3). These results provide

Finite-size

2,50 . :
and 8 and lengths of0%, 2 x 107, and 107 sweeps,
respectively. The sensitivity to a variation K, was
estimated from additional runs &t,, = 0.1114336 and 249 |
0.1114s%60. ]
Further details including the ordering of the couplings D P -
according to the importance index are contained in 248 [ 1
Ref. [3]. Table | lists the resulting estimates for the y
exponentsyr and yy, as determined from the largest ! ‘;%
247 \ 1
TABLE I. Numerical results for the renormalization expo-
nentsyr and yy, obtained aftem block-spin transformations
of a system of sizé.. 246 - e j
Exponent n L =232 L=16 L=238 <
yr 1 1.5885 (3) 1.5885 (6) 1.5868 (8) 245 LN .
yr 2  1.5852 (5) 1.5829 (9) 0.00 0.25 " 0.50
yr 3 1.5829 (9) 2
VH 1 2.48492 (4) 2.48500 (7) 2.48521 (22) FIG. 4. The convergence of the magnetic expongntwith
Vi 2 248309 (11) 2.48327 (25) increasing number of iterations of the block-spin transforma-
Vi 3 2.48219 (27) tion. Results are shown for the present MCRG calculati@®s (

and for those reported in Ref. [3]).
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