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The synchronization and signal processing properties of a linearly coupled chhirowérdamped
bistable elements, subject to a deterministic periodic signal and uncorrelated white noise, are addressed
in the continuum limit of a¢* field theory. The scaling relations for the optimum noise and coupling
strengths that correspond to the obsergpdtiotemporal stochastic resonanaee derived via thep*
theory and shown to conform to the results of earlier numerical simulations in theNdigt.

PACS numbers: 05.40.+j, 02.50.—r, 87.10.+e

Recently, it has been shown that the stochastic resdntensity D(e), where D(e) is an increasing function
nance effect may be enhanced in a nonlinear dynamic ebf e.
ement by coupling it (linearly) into an array of identical (ii) The peak of SNRversusD for a coupled oscillator
elements [1]; the output signal-to-noise ratio (SNR) may bde > 0) is always more pronounced than for an uncoupled
maximized by treating the coupling and noise strengths asne (¢ =0). This result has been presented in [1] as an
“design parameters,” such that the condition of maximunmenhancement of the SR mechanism due to the coupling
output SNR corresponds to a spatiotemporal synchronizatynamics.
tion of the array dynamics to the external periodic signal. (iii) The spatiotemporal synchronization of the oscilla-
While this array enhanced stochastic resonance (AESRYrs in the array is maximum &D,,, €,,), where the SNR
is known to occur under somewhat more general condireaches its maximum value SR The three quantities
tions (e.g., global nonlinear coupling, correlated noise) [2]SNR,,, D,,, ande,, depend crucially on the lengtN of
we consider here a linear chain of identical overdampethe array. In [3] it has been observed that in the lakge

bistable elements with nearest-neighbor coupling: limit SNR,, approaches a constant, whibg, ande,, scale
. L3 like N andN?, respectively (data points in Fig. 1).
Xp = kx, — k'x, + Fcos)t In the present Letter we demonstrate that the results
+ €1 = 20, + xp1) + £a(0), outlined in items (i)—(iii) can be easily interpreted as
interrelated manifestations of SR in an overdamped
n=12....N, (1) chain of finite size.

where thet, (1) are taken to be independent Gaussian delta- TheN — o I'm't of E_q. 1)is commonly expressed in
correlated noises having zero mean and vari&izei.e., te”‘?s of the classical f'eld'(?" 1) defined by the transfor-
(£2(1)€0(0)) = 2D 8,,,8(r). The signal amplitud# is al- mation x,(¢) » ¢(nAx,t) with Ax = 1/N, whence the
ways assumed to be subthreshold, i.e., the elements in tQ¥erdampeds™ theory [4,5]

chain cannot switch between their stable steady states in, _ /43

the absence of the noise. Free boundary congitions ared)’ = kp — K¢" + endu + Fooddt + {(x1), (2)
assumed throughout. The cooperation between noise anchere /(x,t) denotes a Gaussian noise source with
coupling has been shown [3] to lead tospatiotempo- spatiotemporal correlatiot (x, 1) (x',t')) = 2Dy 6(t —

ral stochastic resonanceharacterized by the following ¢)8(x — x/). The parameterg and D of Eq. (1) are
behavior. related toey and Dy by € = eyN?> and D = DyN,

(i) The output SNR of a given element in the arrayrespectively. Under these assumptions, Eq. (1) describes
shows a unique maximum on the plaf®, ). The the time evolution of an overdampesd chain of length 1
subscriptm will be used here to denote the maximum with homogeneous von Neumann boundary conditions,
SNR obtainable for a given value of and the relevant ¢,(0,1) = ¢.(1,1) = 0.
values of the coupling and noise intensity. Furthermore, The ¢* theory is known to bear both extended
the SNR plottedrersusD exhibits a typical SR behavior (phonons) and localized (soliton) solutions. Localized
for any value ofe, namely, it peaks for a certain noise solutions can be well approximated to an appropriate
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damped (withf(i constant) and in the overdamped limit
(with X+ constant). The perturbation ternd$x, t) and

F(t) = F cod)t, introduced in (2), cause a rigid transla-
tion of the kink (antikink) against whickp+ is in neutral
equilibrium. In other words, the shape ¢f. is not af-
fected by the perturbation, whereas its center of nkass
becomes a random variable. Hence, in the overdamped
limit (2), a single kink (antikink) undergoes a driven
Brownian motion described by the Langevin equation [6]

X+ = T2(Fa/Mp)cosdt + n(1), (5)

whereF, = /A F and(r) is a Gaussian, zero-mean val-
ued random force with correlation functidm ()% (0)) =
2(Dy/My)6(t). The periodic forcing term pullgh. in
opposite directions.

The elementary mechanisms which allows)4 chain
to switch between its vacuum configuratiospss= *1 is
the nucleation of kink-antikink pairs.[Note that the¢ -
solutions (3) carry opposite topological charge and, there-
fore, they may only be created by the pair] Thermal
fluctuations are expected to trigger the process by acti-
vating a critical nucleus [7-9], the size of which may be
shown to increase with decreasifig[7]. Provided that

FIG. 1. Scaling behavior of optimal coupling (1), optimal the critical nucleus size is small enough to ignore many-
noise (2), and best output SNR (3) obtained via numericahqqy effects [10,11] due to the thermalized kinks and an-

simulations of Eq. (1). k = 210, k' = 147, F =092, Q) =
0.73. The asymptotidN — ) values are in good agreement

with predictions obtained via thé* theory (see text).

linear superposition of moving kinké, and antikinks

&, with [4]
X — X.(1) }

1
be = tan{i_ _x X))
2d 1 - x2(0)/c}

®3)

tikinks with density (4), we can describe the nucleation
process as a local two-body process. This picture requires
that Fad > Dy and Ey > Dy. The two-body nucle-
ation mechanism can then be treated as an extension of the
Kramers theory of thermally activated processes to mul-
tidimensional systems with neutral equilibrium (or zero)
modes [9]. When the nucleation mechanism outlined here
is compared with the hopping mechanism of an uncou-
pled oscillator over the potential barrier, the role of the lin-

provided that the separation between their centers dfar coupling between nearest neighbor oscillators becomes

mass X+ is very large compared with their sizé =

apparent [12]: The saddle-point configuration of thg*

co/wo (dilute gas approximation) and finite-length effectsChain is represented by a cri_tical nucleus and not by the
are negligibled < 1. In Eqg. (3) we made use of unstable homogeneous solutign= 0. _
dimensionless units. To make contact with Eq. (2) one 'Nne nucleation rate, defined as the number of kink-

should setd = k/k', w3 = 2k, c¢§ = ey and rescalep
back to ¢ /+/A. Equation (2) with F = 0 provides a
simple, efficient thermalization mechanism for tifet
theory in the overdamped limit [6]. The equilibrium kink
(antikink) density in a¢* theory at finite temperature

is [4]

27 ) d\Dy

1/2 1/2
n:=n0=<3> i(ﬂ> exp(—Eo/Dy). (4)

where Ey = 2Awgcp/3 is the rest energy andfy =
Eo/ci is the mass ofé-. It follows that the dilute
gas approximation holds fot, ' > d, that is, for low
noise intensity,Dy < E;. In such a regime{X2) =
Dn/My < 3, so that the relativistic boost factor in

Eq. (3) may be safely approximated to unity.

In the absence of perturbationg,- is the kink (anti-

antikink pairs nucleated per unit of time and length, can
be calculated analytically to a good approximation in the
strong-forcing and low-noise limit introduced above. In
passing we note that these are the conditions simulated
in the numerical investigations of Refs. [1] and [3]. For
simplicity, we assume that the chain sits initially in the
stable homogeneous stafe = —1 and that the forcing
term F(¢) is constant and positive definite. THéz) time
dependence will be accounted for at a later stage, only,
according to the prescriptions of the standard rate theory
[9]. A large nucleus¢y(x,X) with length2X > d is

well represented by the linear superposition of a kink and
an antikink centered at X, respectively,

Oy, X) = (x + X,00 + o_(x — X,0) + 1. (6)

The center of the nucleus has been set at the origin

kink) solution of the SG equation both in the under-without loss of generality. The components of a large
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nucleus experience two contrasting forces: an attractivef Eq. (6), the potential function corresponding to the
force due to the vicinity of the nucleating partner andinternal force is [13]
a repulsive force due to the external bi&s In view |

+oo

Vy(X) = H[pn(x,X)]dx =6Eo[(—2/3 + 3K —2K?) + (X/d)(1 — 3K? — 2K?)], (7)

—0o0

with K = tanh '(X/d) and forX > d may be further | to the effective lengtl2Ry (F) of the critical nucleus, i.e.,
approximated to [5] 2RN(F) = R(F//2).
Vy(X) = 2E[1 — 6exp(—2X/d)]. (8) _ Going ba}ck to the_ fir_1ite—|ength, ovgrdampéd chain
) ) ) simulated in [1,3], it is clear that in our picture the
The effectlvg external potential can pe read out directlyypserved spatiotemporal synchronization of the chain
from the drift term of Eq. (3), that is*2F4X. The \q,id take place when the length of the critical nucleus
criical nucleus configuratiorpy(x, R) is attained for a s of the order of half the chain itself (as required by the
relative kink-antikink distanc@R(F) such that the tWo  free_end boundary conditions adopted there [15]). In the
competing forces compensate each other, i.e., for continuum units of Eq. (2), this amounts to the condition
2R(F) = —dIn(F4d/12Ey) = —d In(F/24-/3F,), 9 2R, = % On solving this equation foey = c3, one
with F. = (2/3)J/k3/3k’. The critical nucleus admits obtains from (9)
only one unstable mode, associated with the collective € wi

variableX (1), with negative eigenvalue [13] (en)nm = 35 = 16 N2(F /24GF,) (14)

AY = V'(R)/My = —4Fa/dMy = —6F /~/A.  (10) Under this condition, the SNR can be easily approximated
Moreover, its energyAEy(F) is obtainable through by
Eq. (7) or (8) after replacing with R(F).

— 2
The nucleation rate in a biased overdampgtchain SNR = 10logio[7AT' /16Dy ], (15)
compact form [9,13] reads where we have made use of the perturbation expression
Y| Zy for the SNR of an uncoupled oscillator [16]. For a fixed
= Z exp(—AEy/Dy), (11)  value of the couplingy, the SNR peaks for
where Z;, and Zy denote the partition function for AEy/Dy = 5/2 (16)

the vacuum and the critical nucleus field configuration . . .
. . Isee Eq. (13)], thus showing a characteristic SR behavior.
E)%Stmﬁgverll)gnoﬁhrﬁoggtsr(z\?vliih ?5:1%% {J %ﬁ Sa%CC(::Junrf) ]:/(\)/Lic Note that the relevant activation energy is represented by
X P ' r}he energy of the critical nucleus (7) and (8). Condition

“dress” ¢¢ and ¢y, and the two internal modes of s N .
¢y with discrete (nearly degenerate) eigenvalugs= (16) implies thatr;[he SR value QZN Increases wg[h/e_
3w} /4 [4,5]. A standard calculation yields [14] since to a rough approximatioAEy ~ 2Eo and o s

0 I 12 s proportional to,/ey. This remark clarifies item (i).
In wd [ AEy wd The value of the noise intensitp,,, corresponding
Z =W Dy 27| AY| (12) {5 the maximum synchronization of the chain, follows

Zy AY
. B . . immediately by combining the SR condition (16) with the
On putting Egs. (7)—(12) together we finally arrive at Oursynchronization condition (14):

analytical expressions fdr:

L 1 D
8 wo( 3F \'(AEyY’ (D) = 22
r=—— — | exp(—AEyx/Dy). (13 N
T d (\/EFC> (DN> q N/ N) ( ) . 12 -
To account for the time dependence of the external bias = — woA('E—”;) (1 - + ) 7
F(r), we assume with Ref. [3] that fadby =< (Dy),, the 15 N 4\/6F

angular frequency) is much larger thad”. This means The results of Egs. (14) and (17) reproduce the scaling
that the effective ratd’y is given by the time average of |laws observed numerically in [3]. On inserting the actual
I', (13), over one forcing periodz /€. When taking simulation parameter valuds = 2.10, k/ = 1.47, Q =
such an average, one should notice that for the stabl@73, and F = 0.92, one obtainse,,/N> = 0.021 and
configuration g = —1 (or ¢o = 1) and F(r) =0 [or D, /N = 0.18 in reasonably good agreement with the
F(r) = 0] I' vanishes. Furthermore, the result of time numerical estimates (0.02 and 0.21, respectively) obtained
averaging over the semiperiod wiff(r) > 0 [or F(r) < via direct simulation of (1) (Fig. 1).

0] is crudely reproduced by replacinig with F/~/2 both The corresponding value of S)Rollows immediately

in the Arrhenius factor and in the prefactor of Eq. (13), soby substituting the asymptotic values ef,/N> and
that T'y(F) = (%)F(F/\/E). The same treatment applies D,,/N into Eq. (15). For the above parameter values, our
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