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The synchronization and signal processing properties of a linearly coupled chain ofN overdamped
bistable elements, subject to a deterministic periodic signal and uncorrelated white noise, are addres
in the continuum limit of af4 field theory. The scaling relations for the optimum noise and coupling
strengths that correspond to the observedspatiotemporal stochastic resonanceare derived via thef4

theory and shown to conform to the results of earlier numerical simulations in the largeN limit.
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Recently, it has been shown that the stochastic re
nance effect may be enhanced in a nonlinear dynamic
ement by coupling it (linearly) into an array of identica
elements [1]; the output signal-to-noise ratio (SNR) may
maximized by treating the coupling and noise strengths
“design parameters,” such that the condition of maximu
output SNR corresponds to a spatiotemporal synchroni
tion of the array dynamics to the external periodic sign
While this array enhanced stochastic resonance (AES
is known to occur under somewhat more general con
tions (e.g., global nonlinear coupling, correlated noise) [2
we consider here a linear chain of identical overdamp
bistable elements with nearest-neighbor coupling:

Ùxn ­ kxn 2 k0x3
n 1 F cosVt

1 esxn21 2 2xn 1 xn11d 1 jnstd,

n ­ 1, 2, . . . , N , (1)

where thejnstd are taken to be independent Gaussian del
correlated noises having zero mean and variance2D, i.e.,
kjnstdjn0 s0dl ­ 2Ddnn0dstd. The signal amplitudeF is al-
ways assumed to be subthreshold, i.e., the elements in
chain cannot switch between their stable steady state
the absence of the noise. Free boundary conditions
assumed throughout. The cooperation between noise
coupling has been shown [3] to lead to aspatiotempo-
ral stochastic resonancecharacterized by the following
behavior.

(i) The output SNR of a given element in the arra
shows a unique maximum on the planesD, ed. The
subscriptm will be used here to denote the maximum
SNR obtainable for a given value ofN and the relevant
values of the coupling and noise intensity. Furthermo
the SNR plottedversusD exhibits a typical SR behavior
for any value ofe, namely, it peaks for a certain nois
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intensity Dsed, where Dsed is an increasing function
of e.

(ii) The peak of SNRversusD for a coupled oscillator
se . 0d is always more pronounced than for an uncoupl
one se ­ 0d. This result has been presented in [1] as
enhancement of the SR mechanism due to the coup
dynamics.

(iii) The spatiotemporal synchronization of the oscilla
tors in the array is maximum atsDm, emd, where the SNR
reaches its maximum value SNRm. The three quantities
SNRm, Dm, andem depend crucially on the lengthN of
the array. In [3] it has been observed that in the largeN
limit SNRm approaches a constant, whileDm andem scale
like N andN2, respectively (data points in Fig. 1).

In the present Letter we demonstrate that the res
outlined in items (i)–(iii) can be easily interpreted a
interrelated manifestations of SR in an overdampedf4

chain of finite size.
The N ! ` limit of Eq. (1) is commonly expressed in

terms of the classical fieldfsx, td defined by the transfor-
mation xnstd ! fsnDx, td with Dx ­ 1yN , whence the
overdampedf4 theory [4,5]

ft ­ kf 2 k0f3 1 eNfxx 1 F cosVt 1 z sx, td , (2)

where z sx, td denotes a Gaussian noise source w
spatiotemporal correlationkz sx, tdz sx0, t0dl ­ 2DN dst 2

t0ddsx 2 x0d. The parameterse and D of Eq. (1) are
related to eN and DN by e ­ eN N2 and D ­ DN N,
respectively. Under these assumptions, Eq. (1) descr
the time evolution of an overdampedf4 chain of length 1
with homogeneous von Neumann boundary conditio
fxs0, td ­ fxs1, td ­ 0.

The f4 theory is known to bear both extende
(phonons) and localized (soliton) solutions. Localize
solutions can be well approximated to an appropria
© 1996 The American Physical Society 2609
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FIG. 1. Scaling behavior of optimal coupling (1), optim
noise (2), and best output SNR (3) obtained via numer
simulations of Eq. (1). k ­ 210, k0 ­ 1.47, F ­ 0.92, V ­
0.73. The asymptoticsN ! `d values are in good agreeme
with predictions obtained via thef4 theory (see text).

linear superposition of moving kinksf1 and antikinks
f2, with [4]

f6 ­ tanh

"
6

1
2d

x 2 X6stdq
1 2 ÙX2

6stdyc2
0

#
(3)

provided that the separation between their centers
mass X6 is very large compared with their sized ;
c0yv0 (dilute gas approximation) and finite-length effec
are negligible d ø 1. In Eq. (3) we made use o
dimensionless units. To make contact with Eq. (2) o
should setA ­ kyk0, v

2
0 ­ 2k, c2

0 ­ eN and rescalef
back to fy

p
A. Equation (2) with F ­ 0 provides a

simple, efficient thermalization mechanism for thef4

theory in the overdamped limit [6]. The equilibrium kin
(antikink) density in af4 theory at finite temperatur
is [4]

n6 ­ n0 ­

√
3

2p

!1y2
1
d

√
E0

DN

!1y2

exps2E0yDN d , (4)

where E0 ­ 2Av0c0y3 is the rest energy andM0 ­
E0yc2

0 is the mass off6. It follows that the dilute
gas approximation holds forn21

0 ¿ d, that is, for low
noise intensity,DN ø E0. In such a regime,k ÙX2

6l ­
DN yM0 ø c2

0, so that the relativistic boost factor i
Eq. (3) may be safely approximated to unity.

In the absence of perturbations,f6 is the kink (anti-
kink) solution of the SG equation both in the unde
2610
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damped (with ÙX6 constant) and in the overdamped lim
(with X6 constant). The perturbation termsz sx, td and
Fstd ; F cosVt, introduced in (2), cause a rigid transla
tion of the kink (antikink) against whichf6 is in neutral
equilibrium. In other words, the shape off6 is not af-
fected by the perturbation, whereas its center of massX6

becomes a random variable. Hence, in the overdam
limit (2), a single kink (antikink) undergoes a driven
Brownian motion described by the Langevin equation [6

ÙX6 ­ 72sFAyM0d cosVt 1 hstd , (5)

whereFA ;
p

A F andhstd is a Gaussian, zero-mean va
ued random force with correlation functionkhstdhs0dl ­
2sDN yM0ddstd. The periodic forcing term pullsf6 in
opposite directions.

The elementary mechanisms which allows af4 chain
to switch between its vacuum configurationsf ­ 61 is
the nucleation of kink-antikink pairs.[Note that thef6

solutions (3) carry opposite topological charge and, the
fore, they may only be created by the pair.] Therm
fluctuations are expected to trigger the process by a
vating a critical nucleus [7–9], the size of which may b
shown to increase with decreasingF [7]. Provided that
the critical nucleus size is small enough to ignore man
body effects [10,11] due to the thermalized kinks and a
tikinks with density (4), we can describe the nucleatio
process as a local two-body process. This picture requ
that FAd ¿ DN and E0 ¿ DN . The two-body nucle-
ation mechanism can then be treated as an extension o
Kramers theory of thermally activated processes to m
tidimensional systems with neutral equilibrium (or zero
modes [9]. When the nucleation mechanism outlined he
is compared with the hopping mechanism of an unco
pled oscillator over the potential barrier, the role of the lin
ear coupling between nearest neighbor oscillators becom
apparent [12]: The saddle-point configuration of thef4

chain is represented by a critical nucleus and not by t
unstable homogeneous solutionf ­ 0.

The nucleation rate, defined as the number of kin
antikink pairs nucleated per unit of time and length, ca
be calculated analytically to a good approximation in th
strong-forcing and low-noise limit introduced above. I
passing we note that these are the conditions simula
in the numerical investigations of Refs. [1] and [3]. Fo
simplicity, we assume that the chain sits initially in th
stable homogeneous statef0 ­ 21 and that the forcing
termFstd is constant and positive definite. TheFstd time
dependence will be accounted for at a later stage, on
according to the prescriptions of the standard rate the
[9]. A large nucleusfNsx, Xd with length 2X ¿ d is
well represented by the linear superposition of a kink a
an antikink centered at7X, respectively,

fNsx, Xd ­ f1sx 1 X, 0d 1 f2sx 2 X, 0d 1 1 . (6)

The center of the nucleus has been set at the ori
without loss of generality. The components of a larg
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internal force is [13]
VN sXd ­
Z 1`

2`

HffNsx, Xdg dx ­ 6E0fs22y3 1 3K 2 2K2d 1 sXydd s1 2 3K2 2 2K3dg , (7)
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with K ­ tanh21sXydd and forX ¿ d may be further
approximated to [5]

VN sXd ­ 2E0f1 2 6 exps22Xyddg . (8)

The effective external potential can be read out direc
from the drift term of Eq. (3), that is,62FAX. The
critical nucleus configurationfNsx, Rd is attained for a
relative kink-antikink distance2RsFd such that the two
competing forces compensate each other, i.e., for

2RsFd ­ 2d lnsFAdy12E0d ­ 2d lnsFy24
p

3Fcd , (9)

with Fc ­ s2y3d
p

k3y3k 0. The critical nucleus admits
only one unstable mode, associated with the collect
variableXstd, with negative eigenvalue [13]

lN
0 ­ V 00sRdyM0 ­ 24FAydM0 ­ 26Fy

p
A . (10)

Moreover, its energyDEN sFd is obtainable through
Eq. (7) or (8) after replacingX with RsFd.

The nucleation rate in a biased overdampedf4 chain
compact form [9,13] reads

G ­
jl

N
0 j

p

ZN

Z0
exps2DEN yDN d , (11)

where Z0 and ZN denote the partition function for
the vacuum and the critical nucleus field configuratio
respectively. The entropic factorZNyZ0 accounts for
both the phonon modes (with continuum spectrum), wh
“dress” f0 and fN , and the two internal modes o
fN with discrete (nearly degenerate) eigenvaluesl

N
b ­

3v
2
0y4 [4,5]. A standard calculation yields [14]

ZN

Z0
­ 9

v
2
0

l
N
b

√
DEN

DN

!1y2√
v

2
0

2pjl
N
0 j

!1y2

. (12)

On putting Eqs. (7)–(12) together we finally arrive at o
analytical expressions forG:

G ­
8
p

v
2
0

d

√
3F

p
2Fc

! 1

2

√
DEN

DN

! 1

2

exps2DEN yDN d . (13)

To account for the time dependence of the external b
Fstd, we assume with Ref. [3] that forDN & sDN dm the
angular frequencyV is much larger thanG. This means
that the effective rateGN is given by the time average o
G, (13), over one forcing period2pyV. When taking
such an average, one should notice that for the sta
configurationf0 ­ 21 (or f0 ­ 1) and Fstd # 0 [or
Fstd $ 0] G vanishes. Furthermore, the result of tim
averaging over the semiperiod withFstd . 0 [or Fstd ,

0] is crudely reproduced by replacingF with Fy
p

2 both
in the Arrhenius factor and in the prefactor of Eq. (13),
that GN sFd ­ s 1

2 dGsFy
p

2d. The same treatment applie
ly
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,

h
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o

to the effective length2RN sFd of the critical nucleus, i.e.,
2RN sFd ­ RsFy

p
2d.

Going back to the finite-length, overdampedf4 chain
simulated in [1,3], it is clear that in our picture th
observed spatiotemporal synchronization of the ch
would take place when the length of the critical nucle
is of the order of half the chain itself (as required by th
free-end boundary conditions adopted there [15]). In t
continuum units of Eq. (2), this amounts to the conditio
2Rm ­

1
2 . On solving this equation foreN ; c2

0, one
obtains from (9)

seN dm ­
em

N2
­

v
2
0

16 ln2sFy24
p

6Fcd
. (14)

Under this condition, the SNR can be easily approxima
by

SNR ­ 10 log10fpAGNy16D2
N g , (15)

where we have made use of the perturbation express
for the SNR of an uncoupled oscillator [16]. For a fixe
value of the couplingeN , the SNR peaks for

DENyDN ­ 5y2 (16)

[see Eq. (13)], thus showing a characteristic SR behav
Note that the relevant activation energy is represented
the energy of the critical nucleus (7) and (8). Conditio
(16) implies that the SR value ofDN increases with

p
eN ,

since to a rough approximationDEN , 2E0 and E0 is
proportional to

p
eN . This remark clarifies item (i).

The value of the noise intensityDm, corresponding
to the maximum synchronization of the chain, follow
immediately by combining the SR condition (16) with th
synchronization condition (14):

sDN dm ­
Dm

N

­
8

15
v0A

√
em

N2

!1y2√
1 2

F

4
p

6Fc
1 · · ·

!
. (17)

The results of Eqs. (14) and (17) reproduce the scal
laws observed numerically in [3]. On inserting the actu
simulation parameter valuesk ­ 2.10, k0 ­ 1.47, V ­
0.73, and F ­ 0.92, one obtainsemyN2 ­ 0.021 and
DmyN ­ 0.18 in reasonably good agreement with th
numerical estimates (0.02 and 0.21, respectively) obtai
via direct simulation of (1) (Fig. 1).

The corresponding value of SNRm follows immediately
by substituting the asymptotic values ofemyN2 and
DmyN into Eq. (15). For the above parameter values, o
2611
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prediction for SNRm is of the order of 24, independent o
the value ofN , to compare with a simulation estimate o
21 (Fig. 1). At this point, we stress the fact that, sin
our approach to the overdampedf4 chain was developed
in the continuum limit, our scaling laws forem, Dm, and
SNRm are only tenable in the limitN ! `, as pointed out
in item (iii) [17].

Finally, we remark that the statement in item (
comes about quite naturally under the present schem
spatiotemporal synchronization. The maximum SNR
a coupled oscillator is larger than for an uncoupled o
because the saddle-point configuration of thef4 chain
involves an activation energyDEN sFd smaller than the
energy associated with the homogeneous configura
f ­ 0. The switching mechanism is thus enhanced
e . 0. On the other hand, fore . em the critical nucleus
would stretch beyond the boundaries, thus making
nucleation mechanism less efficient, as clearly shown
Fig. 1 of [1]. Ultimately, for very large values ofe
the chain will behave like a rigid rod and the couplin
becomes immaterial.

The array enhanced stochastic resonance (AESR) p
nomenon and its attendant spatiotemporal synchroniza
may well be an important feature of information processi
in neural networks. In fact, we believe the AESR pheno
enon to be sufficiently general that it might be applicab
to the design and operation of extended systems rang
from bioengineering receptors to remote sensing array

One of us (F. M.) wishes to thank Professor B.
Halperin for his kind hospitality at the Physical Lab
oratories of the Harvard University. This work wa
supported in part by the Istituto Nazionale di Fisica Nuc
are (VIRGO Project), the U.S. Office of Naval Resear
(Physics Division), and by a NATO collaborative resear
grant.

*Mailing address: Istituto Nazionale di Fisica Nuclear
VIRGO Project, Universitá di Perugia, I-06100, Perug
Italy. On leave of absence from Dipartimento di Fisic
Universitá di Camerino, I-62032 Camerino, Italy.

[1] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa
and A. R. Bulsara, Phys. Rev. Lett.75, 3 (1995); M.
Inchiosa, A. Bulsara, J. Lindner, B. Meadows, an
W. Ditto, in Proceedings of the Meeting on Nonlinea
Dynamics and Full Spectrum Processing, Mystic, CT, J
1995,edited by R. Katz (AIP, New York, 1995).
2612
of
r
e

n
r

e
n

e-
n

-

g

-

[2] P. Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. R
A 46, 1709 (1991); M. Inchiosa and A. Bulsara, Phy
Lett. A 200, 283 (1995); Phys. Rev. E52, 327 (1995);
A. Neiman and L. Schimansky-Geier, Phys. Lett. A197,
397 (1995).

[3] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa
and A. R. Bulsara (to be published).

[4] J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E
Trullinger, Phys. Rev. B22, 477 (1980).

[5] R. Rajaraman,Soliton and Instantons(North-Holland,
Amsterdam, 1982).

[6] F. Marchesoni, Phys. Lett. A115, 29 (1986); D. W.
McLaughlin and A. C. Scott, Phys. Rev. A18, 1652
(1978).

[7] A. Seeger and P. Schiller, inPhysical Acoustics,edited
by W. P. Mason (Academic, New York, 1966, Vol. IIIA
p. 361.

[8] F. Marchesoni, Phys. Rev. Lett.74, 2973 (1995).
[9] J. S. Langer, Ann. Phys.54, 258 (1969); for a review, see

P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phy
62, 251 (1990).

[10] P. Hänggi, F. Marchesoni, and P. Sodano, Phys. Rev. L
60, 2563 (1988).

[11] F. Marchesoni, Phys. Rev. Lett.73, 2394 (1994).
[12] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A18, 2239

(1985).
[13] F. Marchesoni, Ber. Bunsenges. Phys. Chem.95, 353

(1991).
[14] The interested reader can reproduce this result by inser

the phonon density for thef4 theory, available in
[4] (Table I), into Eq. (24) of [13]. Note that two
(degenerate) bound states must be accounted for inZN

with eigenvalueslN
b ­ 3v

2
0y4.

[15] The effect of the boundary conditions on the synchroniz
tion condition (20) can be better appreciated by follow
ing the treatment of T. Christen, Europhys. Lett.31, 181
(1995).

[16] L. Gammaitoni, F. Marchesoni, E. Menichella-Saett
and S. Santucci, Phys. Rev. Lett.62, 349 (1989);
B. McNamara and K. Wiesenfeld, Phys. Rev. A39, 4854
(1989); P. Jung and P. Hänggi, Phys. Rev. A44, 8032
(1991).

[17] For finite N values discretization effects become obser
able, kinks get trapped by the Peirels-Nabarro potent
and the nucleation mechanisms should be treated ana
cally with more caution. For a review, F. R. N. Nabarro
Theory of Crystal Dislocations(Dover, New York, 1987),
and for reference to thef4 theory, F. Marchesoni, Phys
Rev. Lett.64, 2212 (1990).


