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A model for fault dynamics consisting of two rough and rigid Brownian profiles that slide one
over the other is introduced. An earthquake occurs when there is an intersection between the two
profiles. The energy released is proportional to the overlap interval. Our model exhibits some specific
features which follow from the fractal geometry of the fault: (1) nonuniversality of the exponent of the
Gutenberg-Richter law for the magnitude distribution, (2) presence of local stress accumulation before
a large seismic event, and (3) nontrivial space-time clustering of the epicenters.

PACS numbers: 91.30.Px, 05.40.+j

Many forms of scaling invariance appear in seismicGutenberg-Richter law is expected (with some exceptions
phenomena: The celebrated Gutenberg-Richter law fdrl0]) to be universal. In addition, the space-time distri-
the magnitude distribution [1], the Omori law for the time bution of the epicenters has no clear relation with the ex-
correlations of aftershocks [2], and space-time clusteringgeriments where nontrivial clustering and correlations are
of the epicenters [3] are common marks of the earthquakpresent.
statistics. Unfortunately, the complexity of modeling the In order to go beyond these limitations we follow here
motion of a fault system, even in rather well-controlledan alternative approach where the critical behavior is
situations, such as the San Andreas fault in Californianot self-organized but stems from the fractal geometry
is a highly difficult task, and it is still controversial of the fault that is supposed to arise as a consequence
what the correct theoretical framework is at the veryof geological processes on very long time scales with
origin of scaling laws. It is thus important to individuate respect to the seismic dynamics. Looking at the system
models as simply as possible that are able to exhibit then the time scale of human records the fault structure
main qualitative features of the fault dynamics. Theircan be considered assigned and just slightly modified by
physical relevance stems from the specific predictions oearthquakes.
the real seismic activity, which might be verified from  Many authors pointed out that natural rock surfaces
experimental data. can be represented by fractional Brownian surfaces over

One of the first attempts in this direction is due to Bur-a wide scale range [11,12] and that also the topographic
ridge and Knopoff [4], who introduced a stick-slip model traces of the fault surfaces exhibit scale invariance [13].
of coupled oscillators to mimic the interaction of two fault A fault can thus be regarded as a statistically self-affine
surfaces. In practice, one considers blocks on a roughrofile #(x), whose height scales #&(x + €) — h(x)| ~
support connected to each other by springs. They are al¢’. In d = 2, such a profiler(x) can be generated by
connected by other springs to a driver which moves afractional Brownian motion with the exponeht and in
a very low constant velocity. The blocks stick until the d = 3 by the standard generalization given by Brownian
spring forces overwhelm the static friction and then one oreliefs [14,15]. The exponerd = H = 1 controls the
more blocks slide, releasing an “earthquake” energy proroughness of the fault where the standard random walk
portional to the sum of the displacements. A numericabrofile corresponds té/ = % and a differentiable curve
integration of the Newton equations for a one-dimensionatorresponds toH = 1. The fractal dimension of the
chain with a large number of homogeneous blocks haprofile is well known to beD; = d — H. In this context,
been shown to exhibit the Gutenberg-Richter law [5] (seeHuang and Turcotte [11] introduced a static model where
also [6] for the connection with the chaotic behavior of thethe average of all the seismic events contributing to the
system). Moreover, it has been proposed that the qualGutenberg-Richter law is taken over many uncorrelated
tative aspects of earthquakes (and of Burridge-Knopoffealizations of one single fractal profile. The purpose
models) are captured by the so-called sandpile model®f this Letter is to introduce a dynamical model, called
which represent the paradigm of a large class of selfthe self-affine asperity model (SAM), that describes the
organized critical (SOC) systems [7], where the scaling isseismic activity considering two profiles sliding one over
spontaneously generated by the dynamics. In fact, thenge other instead of only one as in [11]. Such a model has
is a whole generation of SOC models to explain the scalehe advantage of exhibiting strong spatial and temporal
invariant properties of earthquakes [8,9]. These types oforrelations also between far away seismic events, and
models suggest, however, that there is no stress accumalows us to infer some specific and new predictions about
lation before a big earthquake and the exponent of thehe relation between the roughness of the fauitind the

0031-900796/76(14)/2599(4)$10.00  © 1996 The American Physical Society 2599



VOLUME 76, NUMBER 14 PHYSICAL REVIEW LETTERS 1 ARIL 1996

scaling exponent of the Gutenberg-Richter law as well as With these rules, the motion of the two profiles
on the spatiotemporal distribution of epicenters. It can besimulates the slipping of the two walls of a single
regarded, in a certain sense, as the limit of infinite rigidityfault. The points of collision are the points of the fault
of the Burridge-Knopoff models and thus represents amvhere the morphology prevents the free slip: These
alternative limit with respect to the SOC models. are the points where there is an accumulation of stress
Operatively, the SAM is defined by the following dy- and, consequently, a rise in pressure. When the local
namical rules: (i) We consider two profiles, say(x) and  pressure exceeds a certain threshold, it causes a breaking,
hy(x), on parallel supports of length at infinite distance. an earthquake, which allows the stress to relax and the
The initial condition is obtained by putting them in con- energy, previously accumulated, to redistribute all around.
tact in the point where the height difference is minimal, so For the sake of simplicity, in the SAM, there is no
that hy — hp = 0,Vx € [0, L] [see Fig. 1(a)]. (i) The real breaking of the profiles as a consequence of an
successive evolution is obtained by drifting a profile inearthquake, and the profiles maintain their structures after
a parallel way with respect to the other one at a constard crash. It is possible to introduce a more realistic
speedv, so thath(x;¢) = hy(x — vr). (iii) Ateachtime breaking mechanism where there is also a modification
stept, one controls whether there are new contact point®f the asperity form after an earthquake. However, we
between the profiles, i.e., whethér(x;7) — hy(x) <0  have verified that the main qualitative features remain
for somex value. An intersection represents a single seisunchanged. So we are in the opposite perspective than
mic event and starts with the collision of tvegperitiesof ~ SOC models. In our case the earthquake dynamics has no
the profiles. The energy released is assumed to be preffect on the structure of the profile. A realistic situation
portional to the breaking area of the asperities, i.e., theould well correspond to intermediate cases, of course.
extension of the hypersurfaces, in general, of dimension It is worth stressing that the SAM exhibits a strong
d — 1, involved in the collision of the asperities during nonlocality, since a collision at a point at the timet
an earthquake. For more sophisticated schemes we refean trigger, at some later time, a subsequent event also
the reader to [16]. In the cagk= 2 the energy released very far away. One of the main advantages of the SAM
is given by the sum of the lengths of the two segmentgonsists in the possibility of deriving various analytic
indicated withA andB in Fig. 1(b). (iv) We do not allow results using the properties of Brownian profiles. The
the developing of new earthquakes in a region where anost impressive characteristic of the earthquake statistics
seismic event is already taking place, i.e., with referencés the Gutenberg-Richter law. It states that the probability
to Fig. 1(b); we do not take into account the earthquake®(E) dE that an earthquake releases an energy in the
which eventually take place in the regidnandB of the interval [E,E + dE] scales according to a power law
two profiles, untilA andB have a nonzero overlap. P(E) ~ E~#~1 with an exponenp of the order of unity
[10]. It is a controversial issue whethgris universal or
varies in a narrow range according to the characteristics
(a) of the fault system.
In the framework of our model it is possible to relate
the value of the exponergt to the geometrical properties
of the faults. In particular, it can be shown that

B=1-H/d-1)=(Dr~-1/d-1. (1)

This relation accounts for the direct dependence ofghe
exponent on the roughness of the faudts

In order to derive (1), consider the profilg(x;t) —
hy(x), which being given by the difference of two
Brownian profiles is, in its turn, a Brownian profile at
any timet. The statistics of the intersections between
the two profiles is then given by the statistics of the
intersections of the Brownian profile difference with a
straight line along the temporal axis. Because of the
invariance under temporal shifts of the profile, we can
assume that the statistics of the intersections obtained at
any time with a profile difference is given by the statistics
of the intersections of an infinite profile with a zero level

FIG. 1. (a) Example of two Brownian profiles modeling the

fault surfaces. (b) Sketch for the definition of the energyStrIalgtP]F line. fi L t rel
released during an earthquake: It is assumed to be proportional ' IS PErSPECUVE, a SeISmIC event releases an energy

to the breaking area [thé& — 1)-dimensional set# and B] proportional to the interval between two subsequent in-
between the two asperitiesf « A + B. tersections between a Brownian profile and the zero level
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straight line. It is well known that the set obtained by more exhaustive treatment of this point, including the
the intersection between a fractional Brownian profile oranalysis of the correlation functions and the temporal
relief of dimensiond — H embedded in @-dimensional fractal distribution of epicenters. In our model the space
space and a hypersurface of dimensionadity- 1 is a location of an epicenter is defined in correspondence with
fractal with a dimension given by the law of addition of the first point of contact of the two profiles. Numerical
the codimension [14](d — H) + (d — 1) — d, so that simulations performed on the SAM in the cases with
the number of intersections in a hypersurface of volumed = 0.3, 0.5, and 0.7 would seem to provide a clear
E ~ L% ! scales av(L) ~ L '"#, Now if we iden- evidence of a spatial clustering of the epicenters on
tify the energy released from an earthquake with the siza set with a fractal dimension smaller than 1. For
E of an intersection, we can determine the expongnt instance, a box-counting analysis on a system with linear
by consistency requirements. In our case the probabilitgimensionL = 10* with roughness exponemy = 0.5
P(E) is given by the probability of finding an intersection, gives a fractal dimensioni., = 0.78. However, this
of sizeE, between al-dimensional surface and(d — 1)- result is a nontrivial finite size effect, since the set of
dimensional hyperplane. epicenters tends to be compact whier— «. In fact, it
It is quite natural to assume the existence of a powecan be proved, folH = 0.5, that the fractal dimension
law P(E) ~ E~'~P of the Gutenberg-Richter type in our d., (L) of the epicenter set in a fault of a linear sizés
model as a consequence of its geometrical structure. It
follows that the average value of the intersection size 4.,(L) =1 — yloglogL/logL forlargeL. (3)
should also scale as
Lo Let us, indeed, consider two Brownian profiles of length
_ o d-1)(-p) L as in Fig. 1(a). The distancéy(L) between the
() = fo PE)EAE ~ L ' (22) barycenter of the two profiles can be obtained from the
iterated logarithm theorem [18], which states that, for
Moreover, the typical length of & — 1)-dimensional a partial sums, = >7_; x; of identically distributed
interval is the total lengttLd~! of the support divided by random variablesr; with (x;) =0 and (x}) = 1Vi €

the number of intersection¥(L) so that we also obtain  1,..., n, the following holds:
(Ey = L VN(L) ~ LT, (2b) rlii W ) 4
lT_.SmUp 2nloglogn ’ “)

The consistency of these two results thus implies

H = (d — 1)(1 — p) and so relation (1) between the That means the maximum/(L) of a Brownian profile
Gutenberg-Richter exponet and the roughness index scales ag3/(L) ~ /2L ToglogL.
H of the fault. Now the distancei(L) is given exactly by the maxi-

It is interesting to notice that the valyg = 1 is an  mum value of a Brownian profile obtained by the dif-
upper bound reached when the roughness of the fault igrence of two Brownian profiles, that iBg(L) ~ M(L).
maximal (H = 0). Moreover, 3 = 1 is also recovered On the basis of this result, it is possible to estimate how
for all H values in the mean field limi# — o, while, at  the number of epicenters scales as a functioh.ofCon-

d =3, B canvary in the range [0.5, 1]. sidering the configuration where two Brownian profiles

We have performed numerical simulations by consid-are 4(L) apart, the number of points of the lower profile

ering two Brownian profiles, one of which is at rest andat a certain heightt with respect to its barycenter is
composed of 18 points and the other, slipping over the

first one, composed df X 10* points. In this way each
realization of the dynamics lasts a tinffe= 10*. The
probability distribution of earthquakes has been obtained
by averaging over many realizations of the dynamics. Figwheren is a constant depending on the value.qf) [16].

ure 2 shows the numerical results in the casé/ot 0.5 We now have to integrate over all the possible values of
andd = 2. The exponent of the power law in this case ish that correspond to the heights at which there could be
B = 0.5in good agreement with our theoretical prediction.an intersection of the two profiles in order to obtain the
The Gutenberg-Richter law is obtained by the cumulativeumber of event§N,). The two integration extremes
distribution of the frequency of earthquakes, i.e., the inteare given by the maximum value of the lower profile and

Ndown ~ \/Z eXd_(h2/2nL)] s (5)

gral of the distribution shown in Fig. 2. the minimum value of the upper one, that is,
Another interesting feature that can be studied in the

framework of the SAM is the phenomenology of the Nus(L) ~ VI /2L loglogL ( h? )dh

space-time correlations of earthquakes. In particular, we ep ho— /2L TogTo0L 2nL

will focus on the problem of the spatial clustering of
epicenters [17] and we refer the reader to [16] for a

Jl9oglogL, (6)
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FIG. 2. Probability density of the earthquakes releasing an eriergy/E for roughness inde¥ = 0.5.
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