
VOLUME 76, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 1 APRIL 1996

one
he two
pecific
f the
before
Self-Affine Asperity Model for Earthquakes

V. De Rubeis,1 R. Hallgass,2 V. Loreto,2 G. Paladin,3 L. Pietronero,2 and P. Tosi1
1Istituto Nazionale di Geofisica, Via di Vigna Murata 605 I-00143 Roma, Italy

2Dipartimento di Fisica, Università di Roma “La Sapienza,” P. le A Moro 2 I-00185 Roma, Italy
3Dipartimento di Fisica, Università dell’Aquila, Via Vetoio I-67100 Coppito, L’Aquila, Italy

(Received 28 July 1995)

A model for fault dynamics consisting of two rough and rigid Brownian profiles that slide
over the other is introduced. An earthquake occurs when there is an intersection between t
profiles. The energy released is proportional to the overlap interval. Our model exhibits some s
features which follow from the fractal geometry of the fault: (1) nonuniversality of the exponent o
Gutenberg-Richter law for the magnitude distribution, (2) presence of local stress accumulation
a large seismic event, and (3) nontrivial space-time clustering of the epicenters.
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Many forms of scaling invariance appear in seism
phenomena: The celebrated Gutenberg-Richter law
the magnitude distribution [1], the Omori law for the tim
correlations of aftershocks [2], and space-time cluste
of the epicenters [3] are common marks of the earthqu
statistics. Unfortunately, the complexity of modeling t
motion of a fault system, even in rather well-controll
situations, such as the San Andreas fault in Califor
is a highly difficult task, and it is still controversia
what the correct theoretical framework is at the v
origin of scaling laws. It is thus important to individua
models as simply as possible that are able to exhibit
main qualitative features of the fault dynamics. Th
physical relevance stems from the specific predictions
the real seismic activity, which might be verified from
experimental data.

One of the first attempts in this direction is due to B
ridge and Knopoff [4], who introduced a stick-slip mod
of coupled oscillators to mimic the interaction of two fa
surfaces. In practice, one considers blocks on a ro
support connected to each other by springs. They are
connected by other springs to a driver which moves
a very low constant velocity. The blocks stick until t
spring forces overwhelm the static friction and then one
more blocks slide, releasing an “earthquake” energy
portional to the sum of the displacements. A numer
integration of the Newton equations for a one-dimensio
chain with a large number of homogeneous blocks
been shown to exhibit the Gutenberg-Richter law [5] (
also [6] for the connection with the chaotic behavior of
system). Moreover, it has been proposed that the q
tative aspects of earthquakes (and of Burridge-Knop
models) are captured by the so-called sandpile mod
which represent the paradigm of a large class of s
organized critical (SOC) systems [7], where the scalin
spontaneously generated by the dynamics. In fact, t
is a whole generation of SOC models to explain the s
invariant properties of earthquakes [8,9]. These type
models suggest, however, that there is no stress acc
lation before a big earthquake and the exponent of
0031-9007y96y76(14)y2599(4)$10.00
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Gutenberg-Richter law is expected (with some exceptio
[10]) to be universal. In addition, the space-time dist
bution of the epicenters has no clear relation with the
periments where nontrivial clustering and correlations
present.

In order to go beyond these limitations we follow he
an alternative approach where the critical behavior
not self-organized but stems from the fractal geome
of the fault that is supposed to arise as a conseque
of geological processes on very long time scales w
respect to the seismic dynamics. Looking at the syst
on the time scale of human records the fault struct
can be considered assigned and just slightly modified
earthquakes.

Many authors pointed out that natural rock surfac
can be represented by fractional Brownian surfaces o
a wide scale range [11,12] and that also the topograp
traces of the fault surfaces exhibit scale invariance [1
A fault can thus be regarded as a statistically self-affi
profile hsxd, whose height scales asjhsx 1 ,d 2 hsxdj ,
,H . In d ­ 2, such a profilehsxd can be generated by
fractional Brownian motion with the exponentH and in
d ­ 3 by the standard generalization given by Browni
reliefs [14,15]. The exponent0 # H # 1 controls the
roughness of the fault where the standard random w
profile corresponds toH ­

1
2 , and a differentiable curve

corresponds toH ­ 1. The fractal dimension of the
profile is well known to beDF ­ d 2 H. In this context,
Huang and Turcotte [11] introduced a static model whe
the average of all the seismic events contributing to
Gutenberg-Richter law is taken over many uncorrela
realizations of one single fractal profile. The purpo
of this Letter is to introduce a dynamical model, calle
the self-affine asperity model (SAM), that describes t
seismic activity considering two profiles sliding one ov
the other instead of only one as in [11]. Such a model
the advantage of exhibiting strong spatial and tempo
correlations also between far away seismic events,
allows us to infer some specific and new predictions ab
the relation between the roughness of the faultH and the
© 1996 The American Physical Society 2599
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scaling exponent of the Gutenberg-Richter law as wel
on the spatiotemporal distribution of epicenters. It can
regarded, in a certain sense, as the limit of infinite rigid
of the Burridge-Knopoff models and thus represents
alternative limit with respect to the SOC models.

Operatively, the SAM is defined by the following dy
namical rules: (i) We consider two profiles, say,h1sxd and
h2sxd, on parallel supports of lengthL at infinite distance.
The initial condition is obtained by putting them in co
tact in the point where the height difference is minimal,
that h1 2 h2 $ 0, ;x [ f0, Lg [see Fig. 1(a)]. (ii) The
successive evolution is obtained by drifting a profile
a parallel way with respect to the other one at a cons
speedy, so thath1sx; td ­ h1sx 2 ytd. (iii) At each time
stept, one controls whether there are new contact po
between the profiles, i.e., whetherh1sx; td 2 h2sxd , 0
for somex value. An intersection represents a single se
mic event and starts with the collision of twoasperitiesof
the profiles. The energy released is assumed to be
portional to the breaking area of the asperities, i.e.,
extension of the hypersurfaces, in general, of dimens
d 2 1, involved in the collision of the asperities durin
an earthquake. For more sophisticated schemes we
the reader to [16]. In the cased ­ 2 the energy release
is given by the sum of the lengths of the two segme
indicated withA andB in Fig. 1(b). (iv) We do not allow
the developing of new earthquakes in a region wher
seismic event is already taking place, i.e., with refere
to Fig. 1(b); we do not take into account the earthqua
which eventually take place in the regionA andB of the
two profiles, untilA andB have a nonzero overlap.

FIG. 1. (a) Example of two Brownian profiles modeling th
fault surfaces. (b) Sketch for the definition of the ener
released during an earthquake: It is assumed to be proport
to the breaking area [thesd 2 1d-dimensional setsA and B]
between the two asperities:E ~ A 1 B.
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With these rules, the motion of the two profile
simulates the slipping of the two walls of a sing
fault. The points of collision are the points of the fau
where the morphology prevents the free slip: The
are the points where there is an accumulation of str
and, consequently, a rise in pressure. When the lo
pressure exceeds a certain threshold, it causes a brea
an earthquake, which allows the stress to relax and
energy, previously accumulated, to redistribute all arou

For the sake of simplicity, in the SAM, there is n
real breaking of the profiles as a consequence of
earthquake, and the profiles maintain their structures a
a crash. It is possible to introduce a more realis
breaking mechanism where there is also a modifica
of the asperity form after an earthquake. However,
have verified that the main qualitative features rem
unchanged. So we are in the opposite perspective
SOC models. In our case the earthquake dynamics ha
effect on the structure of the profile. A realistic situatio
could well correspond to intermediate cases, of course

It is worth stressing that the SAM exhibits a stron
nonlocality, since a collision at a pointx at the timet
can trigger, at some later time, a subsequent event
very far away. One of the main advantages of the SA
consists in the possibility of deriving various analyt
results using the properties of Brownian profiles. T
most impressive characteristic of the earthquake statis
is the Gutenberg-Richter law. It states that the probab
PsEd dE that an earthquake releases an energy in
interval fE, E 1 dEg scales according to a power la
PsEd , E2b21 with an exponentb of the order of unity
[10]. It is a controversial issue whetherb is universal or
varies in a narrow range according to the characteris
of the fault system.

In the framework of our model it is possible to rela
the value of the exponentb to the geometrical propertie
of the faults. In particular, it can be shown that

b ­ 1 2 Hysd 2 1d ­ sDF 2 1dysd 2 1d . (1)

This relation accounts for the direct dependence of thb

exponent on the roughness of the faultsH.
In order to derive (1), consider the profileh1sx; td 2

h2sxd, which being given by the difference of tw
Brownian profiles is, in its turn, a Brownian profile a
any time t. The statistics of the intersections betwe
the two profiles is then given by the statistics of t
intersections of the Brownian profile difference with
straight line along the temporal axis. Because of
invariance under temporal shifts of the profile, we c
assume that the statistics of the intersections obtaine
any time with a profile difference is given by the statisti
of the intersections of an infinite profile with a zero lev
straight line.

In this perspective, a seismic event releases an en
proportional to the interval between two subsequent
tersections between a Brownian profile and the zero le
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straight line. It is well known that the set obtained b
the intersection between a fractional Brownian profile
relief of dimensiond 2 H embedded in ad-dimensional
space and a hypersurface of dimensionalityd 2 1 is a
fractal with a dimension given by the law of addition o
the codimension [14],sd 2 Hd 1 sd 2 1d 2 d, so that
the number of intersections in a hypersurface of volu
E , Ld21 scales asNsLd , Ld212H . Now if we iden-
tify the energy released from an earthquake with the s
E of an intersection, we can determine the exponentb

by consistency requirements. In our case the probab
PsEd is given by the probability of finding an intersection
of sizeE, between ad-dimensional surface and asd 2 1d-
dimensional hyperplane.

It is quite natural to assume the existence of a pow
law PsEd , E212b of the Gutenberg-Richter type in ou
model as a consequence of its geometrical structure
follows that the average value of the intersection s
should also scale as

kEl ;
Z Ld21

0
PsEdE dE , Lsd21d s12bd. (2a)

Moreover, the typical length of asd 2 1d-dimensional
interval is the total lengthLd21 of the support divided by
the number of intersectionsNsLd so that we also obtain

kEl ­ Ld21yNsLd , LH . (2b)

The consistency of these two results thus impl
H ­ sd 2 1d s1 2 bd and so relation (1) between th
Gutenberg-Richter exponentb and the roughness inde
H of the fault.

It is interesting to notice that the valueb ­ 1 is an
upper bound reached when the roughness of the fau
maximal sH ­ 0d. Moreover,b ­ 1 is also recovered
for all H values in the mean field limitd ! `, while, at
d ­ 3, b can vary in the range [0.5, 1].

We have performed numerical simulations by cons
ering two Brownian profiles, one of which is at rest an
composed of 104 points and the other, slipping over th
first one, composed of2 3 104 points. In this way each
realization of the dynamics lasts a timeT ­ 104. The
probability distribution of earthquakes has been obtain
by averaging over many realizations of the dynamics. F
ure 2 shows the numerical results in the case ofH ­ 0.5
andd ­ 2. The exponent of the power law in this case
b ­ 0.5 in good agreement with our theoretical predictio
The Gutenberg-Richter law is obtained by the cumulat
distribution of the frequency of earthquakes, i.e., the in
gral of the distribution shown in Fig. 2.

Another interesting feature that can be studied in
framework of the SAM is the phenomenology of th
space-time correlations of earthquakes. In particular,
will focus on the problem of the spatial clustering o
epicenters [17] and we refer the reader to [16] for
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more exhaustive treatment of this point, including t
analysis of the correlation functions and the tempo
fractal distribution of epicenters. In our model the spa
location of an epicenter is defined in correspondence w
the first point of contact of the two profiles. Numeric
simulations performed on the SAM in the cases w
H ­ 0.3, 0.5, and 0.7 would seem to provide a cle
evidence of a spatial clustering of the epicenters
a set with a fractal dimension smaller than 1. F
instance, a box-counting analysis on a system with lin
dimension L ­ 104 with roughness exponentH ­ 0.5
gives a fractal dimensiondep . 0.78. However, this
result is a nontrivial finite size effect, since the set
epicenters tends to be compact whenL ! `. In fact, it
can be proved, forH ­ 0.5, that the fractal dimension
depsLd of the epicenter set in a fault of a linear sizeL is

depsLd . 1 2 g log logLy logL for largeL . (3)

Let us, indeed, consider two Brownian profiles of leng
L as in Fig. 1(a). The distanceh0sLd between the
barycenter of the two profiles can be obtained from t
iterated logarithm theorem [18], which states that, f
a partial sumSn ­

Pn
i­1 xi of identically distributed

random variablesxi with kxil ­ 0 and kx2
i l ­ 1;i [

1, . . . , n, the following holds:

P

√
lim sup

n!`

Snp
2n log logn

­ 1

!
­ 1 . (4)

That means the maximumMsLd of a Brownian profile
scales asMsLd ,

p
2L log logL.

Now the distanceh0sLd is given exactly by the maxi-
mum value of a Brownian profile obtained by the di
ference of two Brownian profiles, that is,h0sLd , MsLd.
On the basis of this result, it is possible to estimate h
the number of epicenters scales as a function ofL. Con-
sidering the configuration where two Brownian profile
areh0sLd apart, the number of points of the lower profi
at a certain heighth with respect to its barycenter is

Ndown ,
p

L expf2sh2y2hLdg , (5)

whereh is a constant depending on the value ofkx2
i l [16].

We now have to integrate over all the possible values
h that correspond to the heights at which there could
an intersection of the two profiles in order to obtain t
number of eventssNepd. The two integration extreme
are given by the maximum value of the lower profile a
the minimum value of the upper one, that is,

NepsLd ,
p

L
Z p

2L log logL

h02
p

2L log logL
exp2

µ
h2

2hL

∂
dh

,
L

slogLdg

p
log logL , (6)
2601
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FIG. 2. Probability density of the earthquakes releasing an energyE vs E for roughness indexH ­ 0.5.
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whereg ­ ayh anda is an intermediate value betweep
2 2 1 and 1. Using the mass-length definition of fra

tal dimension,depsLd ­ logNepsLdy logL, relation (3) is
proved. The asymptotic valuedep ­ 1 is reached very
slowly at increasingL, and it cannot be detected but b
huge simulations. We have checked the validity of (5)
profiles with a linear sizeL varying in the range102 106.
Work is in progress to extend our results to the case o
generic roughness indexH [16].

In summary, we have proposed a model of earthqua
where the critical behavior is generated by a preexis
fractal geometry of the fault. The statistics of earthqua
is thus related to the roughness of the fault via
scaling relation (1) between critical indices. This res
suggests that the younger the fault system, the larger
b exponent, since the roughness of a fault is expecte
decrease in geological times. The exponentb, therefore,
is nonuniversal. The model exhibits complex space-ti
correlations between epicenters: From the temporal p
of view, there exists a fractal clusterization [16], althou
the spatial fractal distribution of the epicenters turns
to be a finite size effect that is very difficult to detect fro
data analysis. Our model provides a possible explana
for the highly irregular and nonrandom distribution
epicenters that is experimentally observed. Moreover,
accumulation of pressure is at the very origin of lar
seismic events in the SAM. The presence of such
effect could be tested also in real situations, e.g.,
piezoelectric measurements.

We are grateful for interesting discussions to E. Cag
oti, O. Mazzella, S. Solla, and R. Scarpa.
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