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We present arguments that the low density surface region of self-bounded superfluid4He systems
is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-part
state atT ­ 0. Numerical evidence for this complete Bose-Einstein condensation was first given b
the many-body variational calculations of4He droplets by Lewart, Pandharipande, and Pieper in 1988
[Phys. Rev. B37, 4950 (1988)]. We show that the low density surface region can be treated rigorous
using a generalized Gross-Pitaevskii equation for the Bose order parameter.

PACS numbers: 67.40.Db, 05.30.Jp
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In recent years, there has been a major effort
produce atomiclike gases in a Bose-condensed ph
using excitons, spin-polarized hydrogen, and laser-trap
alkali atoms (for reviews of this work, see Refs. [1,2]).
such systems, the fraction of atoms in the lowest ene
single-particle state could approach 100% atT ­ 0. This
unique phase of matter was first studied by Einstein
London and would exhibit many unusual properties [
including superfluidity. In contrast, in bulk superflu
4He the condensate fraction is only about 10% atT ­ 0
[1,3]. Thus the ground state wave function does
have the simplicity of a gas with complete Bose-Einst
condensation (BEC).

In the present Letter, we argue that such a dilute Bo
condensed gas is in fact already present in the sur
region of superfluid4He, where the density becomes ve
small. This striking phenomenon has apparently be
overlooked in the extensive theoretical literature on s
faces, films, and droplets of superfluid4He (for references,
see [4]). Moreover, in this low density surface regio
where one has almost 100% BEC into a single state,
can do microscopic calculations of the order parame
using the standard field-theoretic description of an in
mogeneous Bose-condensed fluid [5,6]. Our discussio
limited to ground-state propertiessT ­ 0d but we make a
few remarks about finite temperature at the end.

Striking confirmation of the preceding physical arg
ment is available in the results of Lewart, Pandharipan
and Pieper (LPP) [7], who studied4He droplets (with
up to 240 atoms) using a variational ground-state wa
function approach [8]. These authors calculated the sin
particle “natural orbitals”cisrd which diagonalize the
single-particle density matrix, giving

r1sr, r0d ­
X

i

nic
p
i srdcisr0d , (1)

whereni is the occupation probability of the statecisrd.
The local density is given byrsrd ­ r1sr, rd. By direct
numerical calculation, LPP found that the nodeless1s state
c1ssrd had an occupation probability ofn1s . 25, while
for all the other states,ni , 0.5. They identified (and
justified) this1s state as the Bose-condensed state, w
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an associated local condensate density being given by

rcsrd ­ n1sjc1ssrdj2. (2)

LPP evaluated the total local densityrsrd and the conden-
sate local densityrcsrd using (2). Their results forN ­ 70
atoms are replotted in Fig. 1. However, LPP did not e
plicitly discuss theimplicationsof the most striking feature
shown in Fig. 1, namely, that since in the surface regi
almost all the atoms at a given value ofr are in thec1ssrd
state, this surface region provides a physical realization
the long sought for dilute Bose-condensed gas [1,2].

An important aspect of the calculations in Ref. [7]
that near the center of the droprsrd and rcsrd are very
close to the values in bulk superfluid4He, with rcsrd .
0.1rsrd. This indicates that even droplets ofN ­ 70
atoms are large enough to ensure that the surface re
density profile will be very similar to that of a planar fre
surface of bulk superfluid4He. This is confirmed by more
recent calculations on larger droplets [9]. In the case
planar (versus spherical) symmetry, the atoms will Bo
condense into states with zero momentum parallel to
surface [10].

FIG. 1. The total densityrsrd and condensate densityrcsrd
as a function of the distance from the center of a4He droplet of
70 atoms, based on Fig. 5 of Ref. 7. For simplicity, we ha
smoothed out the small oscillations inrsrd.
© 1996 The American Physical Society 259
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Krotscheck [10] first found that the local conden
sate densityrcsrd increased when the total densityrsrd
decreased in liquid4He in contact with a wall. Camp-
bell [11] has recently drawn attention to the results
Refs. [7–10] and discussed them in the context of the f
mal theory of off-diagonal long-range order (ODLRO) i
liquid 4He droplets. Apart from these papers, Bose co
densation has been ignored in the literature on inhomo
neous Bose liquids atT ­ 0 (for references, see [4] and
[12]). Moreover, even in Refs. [7–11] what is still miss
ing is a physical interpretation of the numerical results f
rcsrd at surfaces as evidence for (and relevance of) a l
density Bose gas in which the condensate fraction can
100%, and the importantimplicationsof this new picture.
It is this aspect which the present Letter addresses.

The numerical results in Fig. 1 are consistent with th
empirical formula given in Ref. [7],

rcsrd ­ rsrd f1 2 0.68rsrdyrBg2, (3)

where rB is the bulk or saturation density of superflui
4He at T ­ 0. It is easy to verify using (3) that the
local condensatefraction rcsrdyrsrd smoothly increases
from 0.1 to unity asrsrd goes fromrB to zero. One
of the most interesting features shown by Fig. 1 is th
rcsrd develops a maximum. Using (3), this occurs whe
rsrd . 0.5rB and corresponds torcsrd . 0.22rB. Thus
the results of Ref. [7] predict that in a certain regio
the density of4He atoms which are Bose condensed c
be twice as large as the bulk valuerc . 0.1rB. Of
course, asrsrd decreases to zero, so mustrcsrd. While
the precise magnitude may depend on the approxim
calculations used in [7], we believe that theincrease
in rcsrd as we go from the center of the4He drop is
a real effect. As noted in Ref. [7], the initial increas
in rcsrd shown in Fig. 1 forrsrd , rB is consistent
with the calculated and observed decrease inrc in bulk
liquid 4He under pressure [13]. Thus in superfluid4He,
≠rcsrdy≠r . 20.3 for r close torB. In contrast, in a
dilute hard sphere Bose gas,≠rcsrdy≠r & 1 [5].

Independently of the numerical results in Refs. [7,9
it is easy to see that the general structure of the var
tional many-particle wave function which LPP and othe
[8,9,14–16] have used to treat the free surface of liqu
4He already builds in the essential physics of a surface
gion which is completely Bose condensed into one sing
particle state. In their simplest form, such wave functio
are assumed to have the Feenberg form

Csr1, . . . , rNd ­ Ae
f2 1

2

P
i,j

usri2rjd2 1

2

P
i
tsridg, (4)

including one- and two-particle correlations. The functio
tsrd controls the shape of the density profilersrd associ-
ated with this wave function. It is easy to see that (4) c
be rewritten in the form

Csr1, . . . , rNd ­ ACJastrow sr1, . . . , rNdCgassr1, . . . , rNd ,

(5)
whereCJastrow alone describes a bulk liquid and
260
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Cgassr1, . . . , rN d ­
NY

i­1

f0srid (6)

describes a Bose gas ofN atoms all occupying the same
single-particle state given byf0srd ­ e2 1

2
tsrd (i.e., with

100% BEC). Choosingusrd andtsrd appropriately, wave
functions such as (4) allow one the variational freedo
to describe atoms in the bulk region (whereCgas . 1)
and in the low density surface region (note that when t
atoms are far apart, one hasCJastrow . 1). It is important
to realize thatf0srd is not the single-particle natural
orbital in (2), since the latter is defined relative to th
complete wave function in (4). The interpretation of (4
as described above in (5) and (6) has not been emphas
in the previous literature on superfluid surfaces (se
however, Ref. [7]), but we think the present analys
clarifies the physics behind the complete BEC found
the surface region.

In the rest of this Letter, we discuss how our new pi
ture can be used to describe the surface region in a rigor
fashion using the field-theoretic analysis of an inhomog
neous Bose-condensed fluid [3,5]. In addition, we poi
out that this has important implications concerning dens
functional approaches used to calculate the surface pr
erties of superfluid4He [4,17,18].

The field-theoretical approach to Bose systems is bas
on the presence of the symmetry-breaking order parame
Fsrd ; kĉsrdl as the anomalous average of the field ope
ator ĉsrd (see Chap. 3 of Ref. [3]). The local condensa
density is given byrcsrd ­ Fsrd2. The equation for the
order parameter can be obtained starting from the Heis
berg equation for the field operator

2i
≠

≠t
ĉsrd ­ fH 0, ĉsrdg , (7)

whereH 0 ­ H 2 mN is the grand canonical Hamiltonian
By carrying out explicitly the commutator of (7) and taking
the statistical average on the equilibrium state of the syst
one obtains the exact equation [6,19]

2

"
h̄2=2

2m
2 m

#
Fsrd 1Z

dr0ysr 2 r0d kĉysr0dĉsr0dĉsrdl ­ 0 , (8)

whereysr 2 r0d is the bare He-He interatomic potentia
When applied to the homogeneous liquid, (8) provid
an exact, nontrivial relationship between the chemic
potentialm and the long-range behavior of the nondiagon
two-body density matrix of a Bose-condensed system [2

In the case of the free surface, the value of the chemi
potential coincides with the bulk4He binding energy
(27.15 K at T ­ 0). In this case, (8) can be used to
investigate the behavior of the order parameterFsrd when
r is in the asymptotic, low density region far from th
surface. Our reasoning is as follows. The domina
contribution to the integral in (8) comes fromr0 in the bulk
region, wherersr0d is large. For this contribution,jr 2 r0j
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is large and the correlation function in (8) is given by th
asymptotically exact formula

kĉysr0dĉsr0dĉsrdl jjr2r0j!` ­ kĉysr0dĉsr0dl kĉsrdl

­ rsr0dFsrd . (9)
This may be viewed as a generalization of the Penro
Onsager result [21]

kĉysr0dĉsrdl jjr2r0j!` ­ kĉysr0dl kĉsrdl

­ Fpsr0dFsrd . (10)
Using (9) in (8), we conclude that forr in the low density
region (8) reduces to"

2
h̄2=2

2m
2 m 1

Z
dr0ysr 2 r0drsr0d

#
Fsrd ­ 0 ,

(11)
where the Hartree potential

yH srd ­
Z

dr0ysr 2 r0drsr0d (12)

describes the field atr due to the bulk region where th
density is large. For such contributions, wherejr 2 r0j

is large, only the long-range attractive van der Waals’ t
of ysr 2 r0d is important. For contributions to (8) whe
jr 2 r0j is small (i.e., whenr0 is in the low surface region)
one can usekĉysr0dĉsr0dĉsrdl . Fsr0d2Fsrd since we are
dealing with a region of complete BEC. Such contributio
are precisely those kept in the standard Gross-Pitaev
theory [5,22] and as usual one needs to include additio
multiple scattering terms [5] which screen the hard core
ysr 2 r0d in (8). However, the details are not importa
here (see Ref. [23]) since the low density atr makes these
contributions to (8) negligible compared to the ones d
cussed above. Similarly, while the many-body screen
of the hard core is not explicitly included in (11) and (12
contributions toyHsrd whenr 2 r0 is small are negligible
because of the low density atr.
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In summary, we conclude that (11) allows one
determine the exact asymptotic behavior ofFsrd far
from the surface of superfluid4He [23]. Interpreting
(11) in physical terms, we see that the bulk of t
liquid produces an effective field which acts to stabili
the dilute inhomogeneous gas in the surface regi
The fact that the atoms in the low density region fe
only this effective field but otherwise are not affecte
by their interactions explains why this region is full
Bose condensed. Equations with the same Hartree-
structure as (11) arise in discussions of the binding ene
of an impurity atom on the free surface of liquid4He,
based on variational wave functions [24].

For a planar surface centered atz ­ 0, the asymptotic
behavior of (12) reduces at largez to yHszd ­ 2rBayz3,
where a depends only on the parameters of the He-
attractive potential [24]. Using this in (11), one finds th
the order parameter has the form

Fszd ~ e2sAz1Byz2d, (13)

where A ­
p

2mjmjyh̄2 . 1 Å21 and B ­ mrBay
2h̄2A . 5 Å2. The above discussion then suggests t
the exponential decay [25] exhibited by the resulti
density profilerszd ­ rcszd ­ jFszdj2 is a direct con-
sequence of the complete BEC in the low density regi
which occurs (see Fig. 1) forrszd & 0.1rB. This behav-
ior differs, for example, from the surface density profi
of a Fermi liquid, where one finds a faster decay, of t
form rszd ~ z22e22Az [26]. Integrating (13) to find the
total number of atoms in the region of essentially 100
BEC, it corresponds to an equivalent surface density
about1014 atomsycm2.

Whatever the density is, the kinetic energy function
of a Bose-condensed system always has a contribu
directly related toFsrd which is given by [5,19]
Z
dr Fpsrd

"
2

h̄2=2

2m

#
Fsrd ­

Z
dr

h̄2

2m
j===

p
rcsrd j2 1

1
2

m
Z

dr rcsrdv2
s srd , (14)
us

e-
rst

tate

liq-
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e
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r

whereFsrd ;
p

rcsrd eiSsrd andmvssrd ; h̄=Ssrd is the
local superfluid velocity. The expression in (14) is th
origin of the kinetic energy term in (8) and (11).

The long-range coherence effects associated w
superfluidity [19] are related to the local phaseSsrd of
the complex (two-component) Bose order parameterFsrd
defined above. In a situation like the one conside
here, where the local condensate densityrcsrd is rapidly
decreasing normal to the surface, the superfluid flow pr
erties may be quite different parallel and perpendicular
the surface. This clearly has experimental implications

Phenomenological density functional theories used
inhomogeneous superfluid4He [4,17,18] always start from
an energy functional ofrsrd alone, usually of the form

Hfrsrdg ­
Z

dr
h̄2

2m
j===

p
rsrdj2 1 Vcorrfrsrdg . (15)
e

ith

d

p-
to

or

The first term is the kinetic energy of an inhomogeneo
ideal Bose gas with a given local densityrsrd, while
Vcorrfrsrdg is a phenomenological expression used to d
scribe the effects of interactions. More precisely, the fi
term in (15) describes the energy of a fictitious liquid ofN
atoms as if they all occupied the same single-particle s
f0srd ­

p
rsrdyN , corresponding toFsrd ­

p
rsrd. A

complete density functional theory of Bose-condensed
uids would involve functionals of both the local densi
rsrd and the local order parameterFsrd [27]. In such a
theory, the first term of (14) would naturally arise in plac
of the first term in (15), although we note that the two term
coincide in the important low density surface region sin
rcsrd . rsrd.

It would be useful to have finite temperature pa
integral Monte Carlo calculations ofrcsrd in the surface
region of superfluid4He [28]. Physically, it seems clea
261
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that the surface region will Bose condense at the bu
superfluid transition temperatureTl . 2.17 K. The
chemical potential is the same for the liquid an
vapor in equilibrium and since it is large and negativ
(m . 27 K from 0 to 2 K), the 4He vapor can always
be described as an ideal classical gas. Figure 1 is va
only at low temperatures (&1 K). As the temperature
increases, the condensate densityrcsrd will be increas-
ingly depleted [3] and thus it will be a smaller compone
of the total local densityrsrd, in both the bulk and
surface regions. However, we expect thatrcsrd will still
decrease exponentially in the surface region, whilersrd
will go over smoothly to the small but finite density o
the 4He vapor.

In conclusion, in this Letter we have argued that th
surface region of superfluid4He in self-bound phases
can be described as an inhomogeneous dilute Bose
which is completely Bose condensed atT ­ 0. Dramatic
evidence for this “self-bound Bose gas” is given by th
numerical calculations in Ref. [7]. We have noted that t
asymptotic low density surface region can be describ
exactlyby the order parameterFsrd given by the solution
of a generalized Gross-Pitaevskii equation (11) taking f
account of the long-range van der Waals tail of the He-H
potential. Optical excitation of the surface atoms might
a way of detecting the completely Bose-condensed nat
of the surface region of superfluid4He. We have used
our new physical ideas to suggest a more microsco
basis for the kinetic energy term used in density function
theories. This inhomogeneous Bose-condensed ga
readily available, and should complement the more exo
Bose gas systems on which much current research
concentrated [29].
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