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Topological Contributions to Nonlinear Elasticity in Branched Polymers
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The dynamics and rheology of entangled polymer fluids are dominated at long times by topological
constraints. The topological structure of the molecules themselves is known to control the linear
stress relaxation function in a way that agrees well with the “tube” model. Here we extend the
model to calculate the nonlinear elastic response of highly branched polymers under large shear
strains. The nonlinear strain dependence is strongly sensitive to the distribution of free ends in the
molecules, in contrast to the linear stress relaxation. Calculations for combs, monodisperse trees, and
the classical gelation ensemble are compared to experimental results on the unknown structure of
branched polyethylene, and point strongly to a treelike structure.

PACS numbers: 83.10.Nn, 61.25.Hq

The dynamics of entangled polymeric liquids exhibit a A significant success of the tube model was its success-
high degree of universality because of the dominance oful prediction of the stress-strain dependence in nonlinear
topological constraints for many physical properties [1].shear deformation of monodisperse linear polymers [14]
The most successful theoretical approach has developeshd surfactant micelles [15]. The deviation of the stress
the “tube” model of de Gennes [2] to increasingly from ideal-rubber response following the imposed shear is
complex but well-defined systems, which have also beedescribed by a “damping function” of strair(y). This
the subject of extensive experimental study [1-12]. is well defined since at long times it is observed that the

In the tube model the constraints imposed on a singleelaxation modulug;(z, y) is separable [16] such that
polymer chain by its neighbors are represented by placing
the chain within a tube, the axis of which follows G(1,y) = h(y)G(1). 1)
the topological constraints on the chain. The chain isThe tube model accounts for this observation by the
generally free to move along the axis of the tube, bunatural separation in time scale of a fast “retraction”
motion perpendicular to the axis is inhibited beyond theprocess and a slow “reptation” process.
tube width. For small deformations the stress arising is seen to

For linear polymers this results in a relaxation mecha-come predominantly from the orientation of the entangled
nism known as reptation [2], in which the chain “snakes”polymer chain. At higher strains the chain can become
its way backwards and forwards out of an imposed oriensignificantly extended, and the elastic stress contribution
tation. Star polymers (polymers in which three or morefrom the increase in contour length must be considered.
chains are joined at a central branch point) find reptaFor linear polymers (and, in fact, star polymers) this
tion impossible since one end of each chain is anchoredontribution relaxes in a timeg, the Rouse time for
Instead each arm must retrace itself back along its tubthe linear polymer or star arm, during which the polymer
whereupon it can spring out into a new configurationretracts into its tube and regains its equilibrium contour
[4-T7]. length [Fig. 1(a)].

The qualitatively new feature in entangled star poly- The amount of stress lost in the retraction process
mers is that modes with well-defined (exponential) relax-comes from both (i) the reequilibrium of the entropic
ation kinetics are spatially localized within entanglementtension in the polymer chain to its equilibrium value and
segments. The relaxation times of an entanglement seg#) the loss of topological constraints represented by the
ment depend exponentially on the molecular distance twacated tube. The Doi-Edwards (DE) damping function
the nearest effective free end (called its “seniority” [12]).is known to fit well the experimentally observed results
This localization is generic for all entangled branchedfor linear polymers above the entanglement molecular
polymers, as has been shown experimentally and theaveight [14]. However, polymers with substantial long-
retically for various topologies [8—12]. The distribution chain branching (LCB) consistently have much weaker
of seniorities within a branched polymer melt completelydamping [14], suggesting that the retraction is inhibited
determines the linear stress relaxation function at the leveh some way.
of the tube model [12]. This is because the orientational The cause of this behavior is apparent if we consider the
relaxation of segments of equal seniority occurs simultageneralization of the tube model to a branched polymer.
neously. In this way branched polymers furnish examplesn the following the term “chain segment” will refer to the
of systems with hierarchically controlled dynamics [13]. length of polymer chain between branch points, whereas
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(a) TN produce this twofold increase in contour length then branch

1 \ ~ Y point withdrawal will not occur.
Y This reasoning can be applied recursively to every
S chain segment in the polymer. We will refer to the ratio
of the maximum permissible tension (after retraction) to

the equilibrium tension as thariority of the chain. Any
chain segment of a branched polymer is attached on either
side to a tree, and each of these two trees will contain a
number of free ends. Noting that each free end transmits
an entropic tensiorf, to the interior chain segments of the
== tree, we deduce that the priority of a segment is just the

(b) N lesser of the totals of free ends in the two trees to which it
SN is attached (cfseniority[12]).
1 3 L™y The stress tensor for a given polymer can be calculated
,’ 1/ by summing over the outer product of tension and
displacement of occupied tube segments
1
o= > fr, )
tube segs
where r is the displacement along the segmehtthe
tension of the chain segment it contains (or sum of
X tensions for multiply occupied tube segments), ahthe
N volume chosen to calculate the coarse-grained stress. |If
a polymer is subject to a strald such that a vectoun of
; < < initially unit length transforms as

u=E-u, (3)
FIG. 1. A polymer subject to a nonlinear strain will experi- :
ence an increase in contour length. For a linear polymer thi hen the average tension along the tube segment whose

contribution to stress relaxes in a timg, during which time initial orientation isu can be written as
the polymer retracts back to its equilibrium contour length (a). u

A branched polymer finds this process inhibited for all but its f=folld)—, 4
free ends, since inner chain segments must contend with the ||

entrOpiC tension in all of the free ends to which they are Wherefo is the equi”brium tension of a chain Segment_

attached (b). The average is taken over the isotropic distribution which
assumes that the tubes are sufficiently long to permit their
segments to effectively self-average over all orientations
in u. Equation (4) describes the tension only after it

“tube segment” will mean a lengih of the tube, wher@  has equilibrated along the length of the occupying chain

is the tube diameter. The outermost chain segments of segment, a process that happens in the rapid tim¢éhe

branched polymer may retract normally, as for the arms oRouse time for an entanglement length. Similarly the end-

a star polymer. A subsequent chain segment, attached to-end displacement of a tube segmetiansforms to

two such outer segments, finds that as it tries to retract it

withdraws the branch point and two outer segments into r'=au' (5)

its own tube, aligning them with each other [Fig. 1(b)].

However, this will not occur at all strains for the following

reason: Both outer chain segments are subject to t

entropic tensionfy = kzT/a when trapped in tubes of

diametera. (This tension arises physically from the W

unrestricted motion of their free ends compared with their o = Ci”0i<f0<|" |>m au > (6)

confined central portions [1].) The next chain segment

into the polymer must be supporting a tension of twice thewvherec; is the concentration afhainsegments of priority

equilibrium tension in order to withdraw the branch pointi andn; is the number of entanglements (tube segments)

into its tube. This will only occur at deformations greater per chain segment of priorityat equilibrium.

than a critical deformation at which this force balance is For longer times, after all permitted retractions and

first achieved. At all greater deformations the stretchedranch point withdrawal processes have taken place, we

chain segment maintains twice its original contour lengthcan recalculate the stress from the consequent changes to

and tension. If the initial deformation is insufficient to the tensiory;, and number of entanglementgs for chain
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At very early times following the deformation, before
Tz, the stress contribution from all the tube segments
het> - . o

occupied by unretracted chains of prioritis therefore
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segments of priority. These quantities transform after 0 -
retraction such that
i i< (uil),
O VR, i (72) o
noit /(lu'l), i < ('), '
i . 7b
= i=(upy. e

The transformations are the result of the branch point
withdrawal mechanism: If the deformation has induced a 1t
sufficient tension then the branch point is withdrawn, the
tension being limited by the priorityof the chain segment

to foi. If the tension is insufficient for branch point (a)
withdrawal to occur, then the tension remains unchanged 15
from its value following the original deformation (7a). 05

Similarly, if branch point withdrawal occurs, then the
reduction in contour length of the chain segment will
cause some tube segments to become vacated, reducing
n; (7b). If branch point withdrawal has not occurred, the
number of tube segments is taken to be unchanged.

The stress sum (2) may then be rewritten for an 05+
arbitrary system of branched polymers as a sum over

chainsegments of priority in their deformed tubes. The ‘9}
sum divides into those segments (of low priority) for —
which branch point withdrawal has occurred and those (of 1y
higher priority) for which it has not,
u'u’
o = foro |u’|> s (b)
i<(u'l) 2 imax 05 0 05 1 1.5
><|: Z NoiCir o T Z noici<|ul|>i|-(8) log vy
i=1 (lu’l) i>(|u’])

This shows by demonstration that the priority distribution
(given byng; andc;) is sufficient information to calculate
the damping function, which may then be simply written
as

h(y) = a(y)/y. 9)
This method has been applied to three different topologies
of LCB: trees, combs, and the gelation ensemble, then
compared with experimental data for randomly branched
low-density polyethylene (LDPE), in shear [14].

The first model is the Cayley tree, in which all chain
segments are the same length and end in branch points of
fixed functionality. Taking a functionality of three, the
relative concentration of segments with prioritis

ci=2N"1/2N — 1), i=2", nEN, (10)

. . . . FIG. 2. The shear damping function plotted against shear
whereN is the maximum generation number in the tree,'strain. In all the graphs the thin line is the Doi-Edwards

The damping function for shear was calculated and igjamping function and the hatched area the experimental results
shown in Fig. 2(a). A limiting curve of many levels of for LDPE [14]. (a) The Cayley tree, with a bounding curve for
branching is shown (providing an envelope for all possiblethe limit of high branching (bold) and the result for four levels

damping functions for the tree) along with a curve thatf Pranching. (b) The comb, with a bounding curve (bold)

. . and the result for four levels of branching. (c) The Flory-
beSF f'FS the experimental results on LDPE. Stockmayer, with the umodified curve (bold) and the result
Similar curves were also calculated for comb structure§ynen starlike and linear material are removed.

[Fig. 2(b)]. The comb and the Cayley tree represent

extremes of architecture that maximize and minimize,

respectively, the relative concentration of chain segments The last model considered here is based upon the
with high priority. Once again a bounding curve and bestFlory-Stockmayer ensemble below its gelation threshold:
fit are shown. A given chain will branch with a probabilityp or
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terminate with a probabilitfl — p). This generates a damping function, however, is generally seen to be too
wide polydispersity of both topology and size, and soshear thinning. By artificially removing star and linear
is a more realistic model for random branching than thecontributions from the ensemble the predictions can be
two monodisperse models. The new parameter is thenade to lie within the experimental region, although the
branching probabilityp. However, we note that the very justification for introducing correlations in the long-chain
broad polydispersity of industrial LDPE requires that onebranching in this way is somewhat pragmatic.

setsp close to (but less thany)., the critical probability The sensitive dependence of nonlinear elasticity on
for gelation. Finite values ofp — p.| then provide an topology with a tube approach is encouraging, as is the
upper exponential cutoff to the new distribution, but asclear signature that all published data on LDPE fall into
this tail doe snot contribute significantly to the dampingcategories of treelike structures. However, the real test
function we may work ap = p.. Using a self-consistent of this theory will be measurements on polymers of well-
equation in a generating function for the priorities [17] characterized topology more complex than simple stars.
it can be shown that for a functionality of three the As well as rheological response, the mechanism of

probability of a segment having a prioritys branch point withdrawal makes direct predictions of
) molecular conformations on the scale of the tube diameter.
ci =q; t 2q; qu, (11a) These could be checked by neutron scattering from
m=i labeled branched polymers.
where We are grateful to G. Bishko, G. Capaccio, P. Hope,
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are the probabilities ofone-sided priorities—that the

number of free ends of one tree connected to an arbitrarily

chosen segment is

For largei and forp near p. this is approximately a .
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