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We have performed computer simulations for a two-dimensional system of classical point par
interacting via anr212 repulsive pair potential to study the melting transition. As the density
increased, the equilibrium system develops hexatic order at pressures lower than the lowest
achievable in an equilibrium crystal. Finite size scaling analysis of the bond orientational order
translational order gives exponents for correlations in the hexatic and solid that are consistent w
Kosterlitz-Thouless-Halperin-Nelson-Young picture.

PACS numbers: 64.70.Dv, 05.70.Fh, 61.20.Ja, 64.60.Fr
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The nature of the melting transition in two dimen
sions has received considerable attention in the past
decades because of the possibility that melting from so
to liquid occurs by two distinct second order transitio
separated by an intermediate phase called the hex
This fascinating suggestion was first made by Halpe
and Nelson (HN) [1], based on the work of Kosterlitz an
Thouless (KT) [2]; additional predictions were later add
by Young [3]. Several computer simulations have be
done to test the theory, but no consensus has been rea
[4–18].

The lack of definitive simulation results is understan
able since correlation times and correlation lengths can
extremely long near phase transitions. This creates d
culties in equilibration and artifacts due to finite syste
size, particularly at solid or hexatic densities. Moreov
the simultaneous presence of two distinct long corre
tion lengths, those for the bond orientational order and
translational order, can confuse a finite size scaling an
sis of the data for small systems.

Here we report computer simulation studies of a cla
sical system of point particles in two dimensions intera
ing via a pairwise additive potential of the formusrd ­
essyrd12. For all data presented in this Letter, we us
reduced units such thate ­ 1, s ­ 1, m ­ 1, andk ­ 1,
wherek is Boltzmann’s constant. We simulated system
with various reduced densitiesrp ­ sNyV2Dds2 along the
reduced isothermT p ­ kTye ­ 1. All results reported
here are for densities very close torp ­ 1, which previ-
ous work [9–11] has identified as the approximate bou
ary between fluid and crystalline states.

The concern about long correlation times led us to u
a simulation method of Swope and Andersen [19] bas
on the bicanonical ensemble (BCE). This method involv
a particle insertion-deletion process that alternates the
tal number of particles betweenN and N 2 1 in accor-
dance with an appropriate detailed balance condition.
the present work, we used it in conjunction with molecu
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o
id
s
tic.
in

d
n
hed

-
be
fi-

r,
-
e

ly-

-
t-

d

s

d-

e
d
s

to-

In
r

dynamics (MD) and hybrid Monte Carlo (HMC) method
[20]. The deletion of a particle and its subsequent ins
tion at a different point in the sample greatly enhances
equilibration of defects. It enhances the net migration
holes and interstitials and the climb of dislocations. Th
method has the added benefit of providing the chemi
potential for the simulated state.

The concern about system size effects led us to stu
and compare the properties of systems of 4096, 16 3
and 65 536 particles as well as those of subdivisions
the 65 536 particle systems.

For fluid states, we performed two separate simulatio
at each state of interest. For one run, the starting state
chosen to have a random liquidlike configuration. Th
other was started from a perfect triangular lattice. A
runs were done using periodic boundary conditions. Bo
states were simulated using MD with the velocity Verl
integrator [21] and stochastic collisions [22] to mainta
the proper temperature. They were continued until t
estimates of the pressure and chemical potential for
two runs agreed within statistical error. This serves
strong proof of our ability to equilibrate. After this point
the simulations were continued, and data were collec
over the next12 000t, wheret ­ sms2yed1y2. Each run
was then continued using HMC [20]. This method ha
the advantage of generating configurations consistent w
a canonical distribution without any systematic errors d
to nonzero time step. These runs consisted of20 000
to 30 000 HMC steps, with each step consisting of1t

of molecular dynamics, with a time step of0.005t, to
generate the trial configuration. The acceptance rate w
roughly65%.

In addition to recording the pressure and chemic
potentials, we calculated the relevant order paramete
The first was the bond orientational order paramet
defined asc2

6 ­ j
1

6N

P
l

P
j exp

°
6iulj

¢
j2, where the sum

on l is over all particles, the sum onj is over the nearest
neighbors of particlel, and ulj is the angle between
© 1996 The American Physical Society 255
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the line joining particlel and particlej and some fixed
reference axis. The second was the translational or
parameter, defined asc2

t ­ j
1
N

P
l expsik ? rldj2, where

rl is the position of particlel. The wave vectork has
a magnitude of2py

pp
3y2r, where the denominator is

the average lattice spacing. To allow for the possibili
of the crystal tilting, we varied the direction ofk over a
120± range; thek that produced the maximum value o
the sum was used to calculate the order parameter.

At equilibrium, the mean value for the estimates of th
pressure, chemical potential, and the two order parame
should not drift with time. For each HMC run, we
performed a time series analysis appropriate for tim
correlated data to verify that each quantity was n
drifting, within statistical error [23].

The long-ranged correlations of the order paramet
are different in the various phases. For liquids, both typ
of order decay exponentially. Solids possess truly lon
ranged bond orientational order while the translation
order decays as a power law, with an exponent0 , h ,

1y3 [24]. Halperin and Nelson [1] suggested that th
intermediate hexatic phase would have bond orientatio
order that decays with a power law exponent0 , h6 ,

1y4, while the translational order decays exponentially.
We applied a finite-size scaling analysis to the ord

parameter data obtained from the 65 536 (64K) partic
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runs. Each 64K configuration was divided into fou
equal sub-blocks (which we refer to as 16K sub-bloc
since they contain approximately 16 384 particles) a
also into 16 equal sub-blocks (which we refer to as 4
sub-blocks). Both order parameters were calculated
the entire system and for all the sub-blocks, and t
average results as a function of (sub-)block size we
computed. A plot of the logarithm of an average ord
parameter versus the logarithm of the (sub-)block leng
provides a diagnostic about the nature of the correlatio
For a strictly finite-ranged correlation, the slope of suc
a plot should be22 for sizes large compared with the
correlation length, but the plot should curve and have
larger, i.e., less negative, slope for sizes that are not la
compared with the correlation length. For algebraic dec
of correlations, the slope should be the negative of t
power law exponent for system sizes in which algebra
decay is realized. Figure 1 contains the results for seve
densities near the phase boundary.

For a density of0.9935, the plot indicates that the
translational correlations decay exponentially. The bo
orientational order plot for this density is barely consiste
with a slope of22 and finite-range correlations. The
slope is slightly larger between 4K and 16K, howeve
suggesting that the correlation length is of the order of t
length of the 4K sub-block. The combined behavior lea
le

n.

k

FIG. 1. (a) Plot of the natural logarithm of the ratioc2
t sLBdyc2

t sLd vs the natural logarithm ofLByL, wherec2
t sLBd is the average

translational order parameter for a (sub-)block of lengthLB and L is the length of the total system. Error bars represent sing
standard deviation error estimates for the ratio. The dark steep dashed line corresponds to a slope of22, which indicates a finite
correlation length. The dark flatter dashed line has a slope of21y3, corresponding to the curve expected at the KT transitio
(b) Plot of the natural logarithm of the ratioc2

6 sLBdyc
2
6 sLd vs the natural logarithm ofsLByLd, wherec

2
6 sLBd is the average bond

orientational order. Again, the dark steep dashed line has a slope of22, corresponding to a finite correlation length. The dar
flatter line has a slope of21y4, which is the expected power law behavior at the HN transition. For both plots, thes correspond
to a density ofrp ­ 0.9935, the n to a density ofrp ­ 1.000, the h to a density ofrp ­ 1.007, and the, to a density of
rp ­ 1.0108. The first three are 65 536 particle systems and the last is a 16 384 particle system.
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us to conclude that this state corresponds to a high dens
liquid. At rp ­ 1.000, we see that the translationa
order is still finite ranged, but the translational correlatio
length has grown to be on the order of the lengt
of the 4K sub-block. The bond orientational curve, i
contrast, is now consistent with a power law deca
with an exponent ofh6 , 1y4. Hence we identify this
state as being at or near the HN transition. Forrp ­
1.007, the translational plot is approximately straigh
within statistical error, but the slope is too large in
magnitude to correspond to a reasonable exponent
translational correlations in a solid (see above). Th
slight negative curvature suggests that the correlatio
may be of finite range but with a correlation length tha
is much larger than the systems studied here. This agr
well with the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory, which predicts this correlation length
to diverge as it approaches the KT transition from
below. The power law exponent extracted from the bon
orientational data for this density is very close to zer
which is again expected for a high density hexatic. Th
state with a density of1.0108 is a solid near the limit of
stability of the solid phase (see below). The translation
correlations now appear to have a power law decay w
an exponent less than1y3. Within noise, the power law
exponent for the bond orientational correlations is zer
this is consistent with the prediction of true long-rang
order in the solid.

Figure 2 shows the calculated pressure as a function
density in the transition region. Here, we focus on liqui
and hexatic states with a density of1.007 and less. For
the 4K and 16K systems, there is a maximum, suggest
of a van der Waals loop and a first order transition
but the amplitude of the oscillation and the appare
width of the transition decreases as system size increas
For the 64K MD systems, the pressure monotonical
increases with density in this range. The 64K HMC
data are consistent with a monotonic rise in pressu
when statistical error is taken into account. An analys
of the distributions of both order parameters for a
(sub-)block sizes of the 64K system and the distributio
of the densities for the 16K sub-blocks showed that the
are unimodal, indicating no tendency to phase separati
These results and the trend of the pressure data w
system size lead us to conclude that there is no fi
order phase transition in this density range. If such
transition were to exist in the thermodynamic limit, th
trends indicate that the coexisting phases would have
very small density difference (approximately0.5%), and
that both coexisting phases are in the range of densit
where the system is hexatic or liquid.

We have also performed 16K particle MD studies o
solid phases of this material with various concentration
of net vacancies. (For one state, we also performed 6
MD and 16K HMC simulations and obtained the sam
results for the thermodynamic properties.) We foun
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FIG. 2. Plot of the pressure vs density. The dot-dashe
dashed, and solid lines represent data taken from 4K, 16K,
64K simulations, respectively. The filled squares correspo
to HMC data. The open circles represent MD data to whi
we have applied a nonzero time step correction of20.06 at all
densities [22]. The error bars for the MD data are estima
of the systematic error in this correction. (The statistical err
of the data is smaller.) The error bars for the HMC represe
single standard deviation estimates of the statistical error.

that crystalline states with a density of about 1.01
lower are unstable with regard to destruction of the
translational order and the formation of a hexatic structu
with unbound dislocations. Also, states with more tha
about 0.1% net vacancies (i.e., one net vacancy fo
each 1000 lattice sites) are unstable with regard to
clustering of the vacancies to form an inhomogeneo
material. Using the method of Swope and Andersen [2
we determined an approximate equation of state for
equilibrium concentration of net vacancies in the solid
a function of density. The state whose data are giv
in the figures, with a density of1.0108, is very near the
lower limit of stability of the solid with an equilibrium
concentration of vacancies. It survived as crystalline f
23 000 HMC steps in a 16K simulation, but there wa
some evidence for the clustering of vacancies. It surviv
as crystalline for8000t of MD in a 64K simulation, but
then became hexatic with unbound dislocations. Th
this state is a lower bound to the density at which t
equilibrium solid is stable. The data for the time durin
which it was crystalline appear in the figures.

Note that the pressure of this state is higher than tho
of the liquid and hexatic states with densities of1.007
and less, according to the more accurate HMC data.
follows that the transition out of the solid phase cann
be a first order transition to a liquid with short-range
257
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bond orientational order. It is presumably a second or
Kosterlitz-Thouless transition, which is consistent wi
the fact that we observe that the solid has two mod
of instability at its lowest density, although we cann
rule out a first order transition to a hexatic with a dens
higher than1.007.

The simplest interpretation of these data is that ther212

repulsive potential system in 2D has a Halperin-Nels
second order transition and a Kosterlitz-Thouless sec
order transition, with an intervening hexatic phase tha
stable over a range of densities that is about1.2% wide.
The compressibility of the hexatic is very large, and w
cannot rule out a narrow first order transitionwithin the
range of fluid and hexatic states. We cannot equilibrate
hexatic states within a density of abouts0.1 0.2d% of the
lowest solid density, so we have no direct informati
about the solid-hexatic transition. The thermodynam
analysis does, however, rule out a first order transit
from a crystalline phase to a liquid with finite ranged bo
orientational order.
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