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Computer Simulation Study of the Melting Transition in Two Dimensions
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We have performed computer simulations for a two-dimensional system of classical point particles
interacting via anr~'? repulsive pair potential to study the melting transition. As the density is
increased, the equilibrium system develops hexatic order at pressures lower than the lowest values
achievable in an equilibrium crystal. Finite size scaling analysis of the bond orientational order and
translational order gives exponents for correlations in the hexatic and solid that are consistent with the
Kosterlitz-Thouless-Halperin-Nelson-Young picture.

PACS numbers: 64.70.Dv, 05.70.Fh, 61.20.Ja, 64.60.Fr

The nature of the melting transition in two dimen- dynamics (MD) and hybrid Monte Carlo (HMC) methods

sions has received considerable attention in the past tWf@0]. The deletion of a particle and its subsequent inser-
decades because of the possibility that melting from solidion at a different point in the sample greatly enhances the
to liquid occurs by two distinct second order transitionsequilibration of defects. It enhances the net migration of
separated by an intermediate phase called the hexatiboles and interstitials and the climb of dislocations. This
This fascinating suggestion was first made by Halperimmethod has the added benefit of providing the chemical
and Nelson (HN) [1], based on the work of Kosterlitz andpotential for the simulated state.
Thouless (KT) [2]; additional predictions were later added The concern about system size effects led us to study
by Young [3]. Several computer simulations have beerand compare the properties of systems of 4096, 16 384,
done to test the theory, but no consensus has been reactetd 65536 particles as well as those of subdivisions of
[4-18]. the 65536 particle systems.

The lack of definitive simulation results is understand- For fluid states, we performed two separate simulations
able since correlation times and correlation lengths can bat each state of interest. For one run, the starting state was
extremely long near phase transitions. This creates diffiechosen to have a random liquidlike configuration. The
culties in equilibration and artifacts due to finite systemother was started from a perfect triangular lattice. All
size, particularly at solid or hexatic densities. Moreover,runs were done using periodic boundary conditions. Both
the simultaneous presence of two distinct long correlastates were simulated using MD with the velocity Verlet
tion lengths, those for the bond orientational order and théntegrator [21] and stochastic collisions [22] to maintain
translational order, can confuse a finite size scaling analythe proper temperature. They were continued until the
sis of the data for small systems. estimates of the pressure and chemical potential for the

Here we report computer simulation studies of a clastwo runs agreed within statistical error. This serves as
sical system of point particles in two dimensions interact-strong proof of our ability to equilibrate. After this point,
ing via a pairwise additive potential of the forn{r) =  the simulations were continued, and data were collected
e(o/r)'2. For all data presented in this Letter, we usedover the nexti2 0007, wherer = (mo?/€)!/?. Each run
reduced units suchthat= 1,0 = 1,m = 1,andk = 1, was then continued using HMC [20]. This method has
wherek is Boltzmann's constant. We simulated systemshe advantage of generating configurations consistent with
with various reduced densitig§ = (N/V,p)o? alongthe a canonical distribution without any systematic errors due
reduced isothernT* = kT /e = 1. All results reported to nonzero time step. These runs consisted2@000
here are for densities very close g6 = 1, which previ- to 30000 HMC steps, with each step consisting bf
ous work [9—11] has identified as the approximate boundef molecular dynamics, with a time step 60057, to
ary between fluid and crystalline states. generate the trial configuration. The acceptance rate was

The concern about long correlation times led us to us&oughly 65%.

a simulation method of Swope and Andersen [19] based In addition to recording the pressure and chemical
on the bicanonical ensemble (BCE). This method involvegotentials, we calculated the relevant order parameters.
a particle insertion-deletion process that alternates the tgthe first was the bond orientational order parameter,
tal number of particles betweed and N — 1 in accor-  defined asy? = I% 202 exp(6i6,;)|%, where the sum
dance with an appropriate detailed balance condition. lon [ is over all particles, the sum onis over the nearest
the present work, we used it in conjunction with molecularmneighbors of particle/, and ¢;; is the angle between
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the line joining particlel and particle; and some fixed runs. Each 64K configuration was divided into four
reference axis. The second was the translational ordexqual sub-blocks (which we refer to as 16K sub-blocks
parameter, defined ag?> = Iﬁ >, explik - r;)|?, where  since they contain approximately 16384 particles) and
r; is the position of particld. The wave vectok has also into 16 equal sub-blocks (which we refer to as 4K
a magnitude 01277/\/\/5/2,), where the denominator is sub-blocks). Both order parameters were calculated for
the average lattice spacing. To allow for the possibilitythe entire system and for all the sub-blocks, and the
of the crystal tilting, we varied the direction & over a average results as a function of (sub-)block size were
120° range; thek that produced the maximum value of computed. A plot of the logarithm of an average order
the sum was used to calculate the order parameter. parameter versus the logarithm of the (sub-)block length
At equilibrium, the mean value for the estimates of theprovides a diagnostic about the nature of the correlations.
pressure, chemical potential, and the two order parameteFor a strictly finite-ranged correlation, the slope of such
should not drift with time. For each HMC run, we a plot should be-2 for sizes large compared with the
performed a time series analysis appropriate for timeorrelation length, but the plot should curve and have a
correlated data to verify that each quantity was notarger, i.e., less negative, slope for sizes that are not large
drifting, within statistical error [23]. compared with the correlation length. For algebraic decay
The long-ranged correlations of the order parametersf correlations, the slope should be the negative of the
are different in the various phases. For liquids, both typepower law exponent for system sizes in which algebraic
of order decay exponentially. Solids possess truly longéecay is realized. Figure 1 contains the results for several
ranged bond orientational order while the translationalensities near the phase boundary.
order decays as a power law, with an exporert n < For a density 0f0.9935, the plot indicates that the
1/3 [24]. Halperin and Nelson [1] suggested that thetranslational correlations decay exponentially. The bond
intermediate hexatic phase would have bond orientationairientational order plot for this density is barely consistent
order that decays with a power law exponént ns <  with a slope of—2 and finite-range correlations. The
1/4, while the translational order decays exponentially. slope is slightly larger between 4K and 16K, however,
We applied a finite-size scaling analysis to the ordersuggesting that the correlation length is of the order of the
parameter data obtained from the 65536 (64K) particléength of the 4K sub-block. The combined behavior leads
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FIG. 1. (a) Plot of the natural logarithm of the ratig(L)/#?2(L) vs the natural logarithm afz/L, wherey?(L ;) is the average
translational order parameter for a (sub-)block of lengthand L is the length of the total system. Error bars represent single
standard deviation error estimates for the ratio. The dark steep dashed line corresponds to a-shpehich indicates a finite
correlation length. The dark flatter dashed line has a slope Iof3, corresponding to the curve expected at the KT transition.
(b) Plot of the natural logarithm of the ratigg(Lz)/ye(L) vs the natural logarithm ofLz/L), wherey¢(L;) is the average bond
orientational order. Again, the dark steep dashed line has a slop&,oforresponding to a finite correlation length. The dark
flatter line has a slope of 1/4, which is the expected power law behavior at the HN transition. For both plots) tt@rrespond

to a density ofp® = 0.9935, the A to a density ofp™ = 1.000, the (] to a density ofp™ = 1.007, and theV to a density of

p* = 1.0108. The first three are 65536 particle systems and the last is a 16 384 particle system.
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us to conclude that this state corresponds to a high density
liquid. At p* = 1.000, we see that the translational
order is still finite ranged, but the translational correlation
length has grown to be on the order of the length
of the 4K sub-block. The bond orientational curve, in
contrast, is now consistent with a power law decay
with an exponent ofns ~ 1/4. Hence we identify this
state as being at or near the HN transition. [pOr=
1.007, the translational plot is approximately straight
within statistical error, but the slope is too large in
magnitude to correspond to a reasonable exponent for
translational correlations in a solid (see above). The
slight negative curvature suggests that the correlations
may be of finite range but with a correlation length that
is much larger than the systems studied here. This agrees
well with the Kosterlitz-Thouless-Halperin-Nelson-Young 14.54 1
(KTHNY) theory, which predicts this correlation length

to diverge as it approaches the KT transition from 14.50 ‘ ‘ ‘ .
below. The power law exponent extracted from the bond “0.993 0.997 1.000 1.004 1.008
orientational data for this density is very close to zero, Density, in units of 6~

which is again expected for a high density hexatic. The _

state with a density of.0108 is a solid near the limit of F!G. 2. Plot of the pressure vs density. The dot-dashed,

- . . ashed, and solid lines represent data taken from 4K, 16K, and
stability of the solid phase (see below). The translationaly simulations, respectively. The filled squares correspond

correlations now appear to have a power law decay Witho HMC data. The open circles represent MD data to which
an exponent less thaly3. Within noise, the power law we have applied a nonzero time step correction-6f06 at all

exponent for the bond orientational correlations is zerodensities [22]. The error bars for the MD data are estimates

. ; ; o _ of the systematic error in this correction. (The statistical error
E)r:SeIrsinC?hneSS;ﬁgt with the prediction of true long rangeof the data is smaller.) The error bars for the HMC represent

- . single standard deviation estimates of the statistical error.
Figure 2 shows the calculated pressure as a function of

density in the transition region. Here, we focus on liquid
and hexatic states with a density bf)07 and less. For that crystalline states with a density of about 1.01 or
the 4K and 16K systems, there is a maximum, suggestiviower are unstable with regard to destruction of their
of a van der Waals loop and a first order transition,translational order and the formation of a hexatic structure
but the amplitude of the oscillation and the apparentvith unbound dislocations. Also, states with more than
width of the transition decreases as system size increasesbout 0.1% net vacancies (i.e., one net vacancy for
For the 64K MD systems, the pressure monotonicallyeach 1000 lattice sites) are unstable with regard to a
increases with density in this range. The 64K HMCclustering of the vacancies to form an inhomogeneous
data are consistent with a monotonic rise in pressuranaterial. Using the method of Swope and Andersen [25],
when statistical error is taken into account. An analysisve determined an approximate equation of state for the
of the distributions of both order parameters for allequilibrium concentration of net vacancies in the solid as
(sub-)block sizes of the 64K system and the distributiora function of density. The state whose data are given
of the densities for the 16K sub-blocks showed that theyn the figures, with a density of.0108, is very near the
are unimodal, indicating no tendency to phase separatiotower limit of stability of the solid with an equilibrium
These results and the trend of the pressure data wittoncentration of vacancies. It survived as crystalline for
system size lead us to conclude that there is no firs23000 HMC steps in a 16K simulation, but there was
order phase transition in this density range. If such aome evidence for the clustering of vacancies. It survived
transition were to exist in the thermodynamic limit, the as crystalline for80007 of MD in a 64K simulation, but
trends indicate that the coexisting phases would have then became hexatic with unbound dislocations. Thus
very small density difference (approximateh5%), and this state is a lower bound to the density at which the
that both coexisting phases are in the range of densitiesquilibrium solid is stable. The data for the time during
where the system is hexatic or liquid. which it was crystalline appear in the figures.

We have also performed 16K particle MD studies of Note that the pressure of this state is higher than those
solid phases of this material with various concentration®f the liquid and hexatic states with densities 10807
of net vacancies. (For one state, we also performed 64kind less, according to the more accurate HMC data. |t
MD and 16K HMC simulations and obtained the samefollows that the transition out of the solid phase cannot
results for the thermodynamic properties.) We foundbe a first order transition to a liquid with short-ranged
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