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The validity of the semiconductor Bloch equations (SBE) depends on the approximate decomposit
of an intraband correlation function into a product of interband transition densities. We analyze t
consequences of this approximation on the intraband dynamics of an optically excited semiconduc
As a special example where the SBE treatment becomes questionable we consider the THz emissio
a narrow band superlattice in a static bias field. A comparison of the second order SBE solution wit
rigorous second order treatment of this system helps one identify the weak points of the SBE appro
and understand the physical background of its failure.

PACS numbers: 71.35.–y, 42.50.Md, 42.65.–k
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The semiconductor Bloch equations (SBE) form
cornerstone in the nonlinear optics of semiconducto
The obvious success of these equations in the explana
of numerous effects [1] tends to disguise the fact th
the SBE are based on the ill-controlled Hartree-Fo
(HF) approximation [2]. The range of validity of th
SBE is therefore not clearly defined. In the prese
Letter we demonstrate that under certain circumstan
the approximate character of the SBE may strongly aff
the predicted response of the semiconductor already
second order in the driving field. Our example will be th
intraband current in a superlattice with narrow miniban
excited by a short laser pulse in the presence of a st
bias field.

In order to find out whether the signal as derived fro
the second order SBE solution is influenced by the
approximation inherent in the SBE we compare it wi
the complete second order solution of the underlyi
microscopic model. This is achieved by using the meth
of dynamics controlled truncation(DCT) of the hierarchy
of density matrices for optically excited semiconducto
The idea of the DCT method developed in detail in [3,
relies on the observation that a complete calculation
the nonlinear optical response of a semiconductor to
prescribed order in the driving field can be achiev
by considering only a finite set of electronic correlatio
functions.

To illustrate our point we use the one-dimension
model presented in Ref. [5]. We have chosen this mo
for two reasons: First, it allows for an easy solutio
of the relevant set of equations of motion rigorous
to second order and, second, it exhibits a qualitativ
remarkable feature. According to the SBE treatment
long time behavior of the terahertz emission signal sho
practically not be affected by the Coulomb interactio
between the carriers. In contrast to this, the rigoro
second order solution calculated using the DCT meth
0031-9007y96y76(14)y2543(4)$10.00
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turns out to be noticeably influenced by the Coulom
interaction.

The microscopic basis for the model of Ref. [5] is pr
vided by a Hamiltonian comprising the single partic
energiese

c,y
k for conduction and valence bands, respe

tively, the dipole coupling to the optical fieldEstd as well
as to a static longitudinal fieldF and the Coulomb in-
teraction between the particles involved. Thee

c,y
k repre-

sent nondegenerate minibands with cosine dispersion
combined miniband widthD. The Coulomb interaction is
modeled by a contact potential of strengthV .

For the intraband processes the dynamical objects
most interest are the occupation densities for conduc
and valence bandCk := kĉy

k ĉkl and Dk := kd̂y
k d̂kl, where

ĉ
y
k (d̂

y
k ) create electrons (holes) with wave vectork.

Within the DCT approachCk is derived from the
electron hole pair densityNklmn := kĉy

k d̂
y
2ld̂2mĉnl via

the relation

Ck 
X
l

Nkllk 1 O sE4d . (1)

An analogous relation holds forDk [3,6,7]. It is impor-
tant to note that (1) does not rely on assumptions ab
the coherence in the system. In fact, (1) has been der
rigorously in Ref. [4] explicitly taking into account the
coupling to a phonon bath in addition to the interpartic
interaction, band energies, and spatially dependent b
edges. There it has also been discussed in detail why
validity of (1) is not expected to be limited by any of th
interaction processes usually considered to be relevan
the description of transient optical experiments near
band edge. In the present paper relation (1) forms the
sis of the discussion of intraband dynamics.

Applying the DCT concept to leading order to the on
dimensional model considered in this paper we obtain
following equation of motion for the pair densityN , which
by construction allows for a calculation ofN up toO sE2d:
© 1996 The American Physical Society 2543
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h2ih̄s≠t 1 1yT1d 1 ec
n 1 ey

2m 2 ec
k 2 ey

2l 1 ieF s≠k 1 ≠l 1 ≠m 1 ≠ndj Nklmn

1
X
q

Vq hNk1q,l1q,m,n 2 Nk,l,m2q,n2qj  M0 E dmn Yp
lk 2 Mp

0 Ep dlk Ymn 1 O sE4d . (2)
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Here, Vq  V is the contact potential representing th
Coulomb interaction in this model,M0 is the interband
dipole matrix element, andYmn := kd̂2mĉnl is the inter-
band pair transition density.

In order to facilitate the comparison of our calculatio
with the results of Ref. [5] we not only use the sam
Hamiltonian with the same parameters as in Ref.
but also adopt the method to treat all couplings
bath systems via the introduction of phenomenologi
dephasing times. It has been pointed out in Ref. [4] t
one is not entirely free to choose the dephasing tim
when it is desired that this phenomenological approa
should not be in conflict with microscopic description
of the corresponding physical processes. In our case
implies the identification of the dephasing time in th
equation forN with the carrier relaxation timeT1, as
discussed in Ref. [6]

In the homogeneous situation studied in this Letter
transition densityY can be written asYmn  dmn Ym.
From (2) we therefore findN to be of the formNklmn 
dkl dmn Nlm.

Before N can be calculated from (2) to lowest orde
one first has to determineYk to linear order in the exciting
field. The corresponding equation of motion reads

h2ih̄s≠t 1 1yT2d 1 e
cy
k 1 ieF ≠kj Yk

2
X
q

Vq Yk2q  M0 E , (3)

wheree
cy
k : e

c
k 1 e

y
2k  h̄vg 2

D

2 cosskdd.
Inverting (3) in terms of the relevant Green function w

obtain

Ykstd  M0

Z t

2`

dt0 Gkst 2 t0, T2d Est0d . (4)

An explicit representation for the Coulomb Green fun
tion Gk is easily constructed along the lines described
Ref. [5]. Using the Coulomb Green functionGkk0 as be-
ing the response to the sourcedstd dkk0 , the lowest order
solution forN according to Eq. (2) reads

Nklstd  ih̄
Z

t0

X
k0l0

Gp
kk0st 2 t0, 2T1d Gll0st 2 t0, 2T1d

3 fM0 Est0d Yp
k0st0d 2 Mp

0 Epst0d Yl0st0dg . (5)

With the help of (1), (4), (5), and the identitP
l Gklst, T0d GlsT , T0d 

i
h̄ ustd usTd GksT 1 t, T0d,

which can easily be derived using the eigenfuncti
s
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representation for the Green functionsGk and Gkl, we
obtain for the electronic occupation density

Ckstd  jM0j
2 2

Z t

2`
dt0

3 Re

∑
Gp

kst 2 t0, T2d Epst0d e2s1yT122yT2d st2t0d

3
Z t0

2`
dt00 Gkst 2 t00, T2d Est00d

∏
1 O sE4d .

(6)

FromCk the THz signal then is found as in Ref. [5].
Figure 1 shows THz signals that have been calcula

for the same parameters as in Ref. [5]. Along with t
DCT result derived from (6), we have plotted curves a
cording to different approximate treatments. The cur
marked “V  0” corresponds to the case of strictly van
ishing Coulomb interaction, while the result of the sem
conductor Bloch equations is labeled SBE. As predict
in previous papers [5,8,9] the SBE signal becomes m
and more similar to the Coulomb free case when the o
tical pulse as well as the interband polarization have
cayed. On the other hand, the qualitative differences
the DCT result are obvious. Another limiting case
interest is the so-calledcoherent limit [6]. It has been
shown in Ref. [6] that, provided the dephasing times fu
fill the relation2 T1  T2, the occupation density is given
by Ck  jYkj2 1 O sE4d. This strict relation between the
dephasing times is, however, in most cases not a real
assumption. Having calculated the complete second or
intraband response for our model offers the opportunity
test the validity of an approximation scheme that kee
the same simple functional relation betweenCk andYk as
in the coherent limit. The different time scales of inte
band and intraband dephasing processes are correcte
hand according to the ansatz

Ckstd TCCL
! e2s1yT122yT2dtjYkstdj2 . (7)

From (6) it follows that thistime scale corrected coheren
limit (TCCL) becomes exact to lowest order not only
the coherent limit, but also in the limit of an ultrasho
optical pulse. As can be seen from Fig. 1 for a 300 fs f
width half maximum (FWHM) pulse the TCCL curve stil
follows very closely the DCT result.

We will now try to localize the discrepancy betwee
the SBE and the rigorous DCT solution. The equation
motion forCk according to the SBE is given by
h2ih̄s≠t 1 1yT1d 1 ieF≠kj Ck  2 i Im

("
EstdM0 1

X
q

Vk2q Yqstd

#
Yp

k std

)
, (8)
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FIG. 1. Calculated THz signals. Upper part: solid line, SB
treatment; dashed line, Coulomb-free limit. Lower part: so
line, DCT result according to Eq. (6); dashed line, TCC
approximation; cf. (7). The parameters wereD  10 meV,
V  9 meV, T1  T2  2 ps, Fed  3.5 meV. The pulses
were chosen to be of Gaussian shape, with0.3 ps FWHM for
the intensity and a central frequency2 meV below the exciton
resonance.

which differs from the corresponding DCT equation on
by the last term on the right hand side in the way that
four point functionN has been replaced byY pY . Such a
factorization, however, is only correct in the coherent lim
Consequently, in this limit the SBE solution coincides w
the DCT response. Discussing the implications of
above factorization, we shall concentrate on two aspe
the frequency contents and the time scales involved. F
we analyze the frequency contents.

From relation (1) it follows that the second ord
intraband signal exhibits excitonic features on any ti
scale because the propagation ofN according to Eq. (2) is
generated by the difference of two excitonic Hamiltonia
and the relevant sources are excitonic too. Hence
DCT approach predicts no single particle signatures
the THz signal. This result is not specific of the simp
one-dimensional model treated in this Letter. It ho
whenever the fundamental relation (1) is true and
especially independent of the form of the interacti
potential. Using, e.g., a screened potential would aff
the excitons and their spectra, but not the fact t
no single particle energies enter the THz signal. W
is specific of the present model is that the intraba
frequencies are given as differences of the resonan
in the linear spectrum. In more general situations t
feature will be lost. So, e.g., the coupling to a phon
reservoir will renormalize the relevant frequencies a
thus destroy the above mentioned parallelism betw
interband and intraband dynamics [4]. Thus in a thorou
e
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analysis of the frequency contents of an observed sig
one has to be aware of the possibility that dissipat
interactions might influence the result. Such effec
are neglected in our present model because we h
used phenomenological dephasing times. Furtherm
when the frequency contents of intraband observab
is compared with other signals dominated by interba
processes like four wave mixing (FWM) measuremen
there are additional sources for differences, as the FW
signal is influenced by renormalizations due to two p
scattering states as well as to contributions from bou
biexcitons already to leading order in the optical fiel
while corresponding terms would enter the THz sign
only via higher order contributions.

Let us now discuss the frequency contents of the HF
proximate solution derived from Eq. (8). For short pul
excitations the source proportional toEstd is practically
a d function, while theY pY source behaves like a ste
function modulated by oscillations with differences of th
excitonic transition frequencies. Under these conditio
the Estd source will excite oscillations with frequencie
determined by the homogeneous part and these are
gle particle frequencies not affected by the Coulomb
teraction. TheYpY source will excite a superposition o
forced oscillations with differences of excitonic transitio
frequencies and free oscillations with single particle fr
quencies such as to guarantee continuity at the onset o
pulse. And here comes the great temptation: Looking
the SBE solution one expects to see the free particle sig
ture in the THz signal when the interband sourceY pY has
decayed. As we have already shown, this feature is
reproduced by the complete second order solution. R
membering that the only difference between the DCT a
the SBE approach in the present context amounts to a
placement of the four point densityN in the equation for
Ck by its factorized counterpartYpY , we must conclude
that retaining the unfactorized source proportional toN
results in a cancellation of the apparent single particle
cillations. Obviously there exists a delicate balance wh
is disturbed by the HF approximation. This problem
by the way, is common to all approaches that appro
mately replaceN by something else in the equation fo
the intraband densityCk . Examples are the introduction
of Boltzmann type scattering terms or the Kadanoff-Bay
ansatz. Whether or not the replacement of theN source
leads to noticeable errors depends on the context. Es
cially when many resonant states or even a continuum
states are involved, the manipulation of the source mi
be harmless. Another case where the factorization ofN
is justified has already been mentioned, namely, a sys
near the coherent limit. Here is the point where the asp
of time scales comes in.

According to the fundamental relation (1), which hold
even in the presence of a dissipative reservoir, theN
source will never decay faster thanCk. Thus also the long
time behavior will be characterized by forced exciton
2545
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oscillations in contrast to the SBE approach where of
contributions only those appear to be long living, whi
in the consequent DCT treatment will be canceled. T
pitfall in the SBE treatment is the replacement of a lo
living density like sourceN) by a short living transition
like quantityYpY).

From these considerations we conclude that deviati
of the SBE approach from the rigorous solution shou
be most pronounced (1) when the excitation is select
to states strongly affected by excitonic effects and
when the system is far from the coherent limit. Th
is confirmed by the results of our calculations shown
Fig. 2. Compared with Fig. 1 we have taken spectra
narrower pulses0.8 ps FWHM), centered on the exci
ton line (cf. the fan chart in Ref. [5]). Furthermore, w
have chosen values for the dephasing times far from
coherent limit. For these excitation conditions the DC
solution almost exclusively shows oscillations with a fr
quency of about 4 ps corresponding to the energy splitt
for the lowest levels in the anticrossing region. In co
trast, the SBE result in the long-time regime approac
the Coulomb free limit exhibiting weak oscillations wit
the single particle Bloch frequencies. Also displayed
the TCCL result. As expected the quantitative deviatio
from the DCT solution are now noticeable because of
longer pulse length, but the qualitative behavior is s
quite similar to the DCT curve. The TCCL treatmen
therefore, provides a simple approximation scheme t
can be expected to yield reasonable results in many ca
especially for short pulse excitation, provided a mod
with constant dephasing times is appropriate.

FIG. 2. Calculated THz signals as in Fig. 1. The paramet
are the same as in Fig. 1 except forT1  4 ps, a pulsewidth
of 0.8 ps FWHM for the intensity and the central frequency
resonance with the exciton.
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Let us finally have a look at the experimental situati
and ask to what extent our analysis is confirmed. So
most observations of THz signals have been reported
be interpretable in terms of excitonic frequencies with
experimental errors [9–11]. Nevertheless, there are a
reports that frequency components different from the o
occurring in interband observables are present [8,12].
whatever the physical origin of these new oscillatio
frequencies will finally turn out to be, an explanatio
based on the SBE must not be trusted even in ca
where predictions extracted from the SBE solution do n
explicitly contradict the experimental findings, becau
with respect to this particular aspect the SBE are
qualitative disagreement with the underlying microscop
model they aim to approximate.

We thank K. Victor for useful discussions an
P. Haring Bolivar and H. G. Roskos for clarifying th
experimental situation.
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