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Complex Fractal Dimensions Describe the Hierarchical Structure
of Diffusion-Limited-Aggregate Clusters
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We analyze large diffusion-limited aggregates and uncover adiscretescaling invariance in their inner
structure, which can be quantified by the introduction of a set ofcomplexfractal dimensions. We
provide a theoretical framework and prediction of their values based on renormalization group th
and a previous wavelet analysis.
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In the context of the renormalization group theory
critical phenomena, self-similarity at the critical point
characterized by an invariance with respect to arbitr
magnifying factors, i.e.,continuousscale invariance. In
contradistinction, a system exhibits discrete scale inv
ance (DSI) if it is invariant under adiscreteset of dilata-
tions only. Formally, DSI leads tocomplexexponents and
log-periodic corrections to scaling [1].

DSI has long been restricted to “man-made” system
like regular lacunar fractals and hierarchical system
where it is built in their mere definition. To our knowl
edge, the first theoretical suggestion of its relevance
physics was put forward by Novikov [2] to describ
the small-scale intermittency in turbulent flows. Mo
generally, some out-of-equilibrium systems present
intermittency have recently been found to have comp
exponents. Rupture in strongly disordered systems
sort of dynamical critical point [3] exhibiting strong inter
mittency in the failure process: Logarithmic periodicitie
in the rate of acoustic emissions preceding the rupture h
been measured for the case of pressure vessels comp
of Kevlar and carbon-fiber-reinforced resin [4]. A simila
behavior has been documented on foreshock acti
preceding large earthquakes in California and the Aleut
Islands [5] and on fluctuations in the chloride and sulfa
ion concentrations of groundwater issuing from we
located near the epicenter of the recent Kobe earthqu
in Japan [6]. In addition, complex exponents appe
also in the seemingly different contexts ofe-expansion
calculations for disordered systems [7] and the statistic
“animals” (connected clusters on a percolation lattice) [

These examples prompt a reconsideration of the is
of DSI and complex exponents. In particular, one wou
like to understand when they occur and to have a tracta
model at hand to study them. On the theoretical si
as discussed in [8], complex exponents are a nat
property of nonunitary Euclidean field theories, releva
to describe most disordered systems (due to the rep
averaging) as well as geometrical systems (due to
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nonlocality). Such theories have a fixed point actio
which is fully scale invariant, but some observable
may have complex dimensions, implying that their Gre
functions are invariant under discrete rescalings on
In these systems, DSI is “spontaneously generated”
the dynamics of the system. For instance, in disorde
systems, DSI is probably associated with the spontane
breaking of replica symmetry, which entails a hierarchic
organization of phase space [9]. The fact that disord
can lead to the spontaneous appearance of a hierarch
scales can easily be seen in one-dimensional Brown
motion in random media [10].

We consider the diffusion-limited-aggregation (DLA
model [11] which allows for a much more complete nu
merical analysis than animals and is the archetype of co
plex fractal growth phenomena to which the foregoin
rupture problems belong [12]. We show by a careful n
merical analysis that the interior of DLA clusters doe
exhibit DSI spontaneously and is characterized by a d
crete set of complex fractal dimensions, the first being t
usual realD0 ­ 1.65 6 0.05 [13–15]. The others con-
trol the log-periodic fluctuations in the variation of th
mass contained in a disk as a function of its radius. T
appearance of DSI is then connected with the results o
recent wavelet transform analysis [13]. These are used
compute the spectrum of the complex dimensions, in go
agreement with numerical results.

The off-lattice DLA clusters that we study are con
structed by making a single particle of sizel diffuse from
a large distance until it makes contact with the bounda
of the cluster at which it sticks to form a new bounda
and so forth. A characteristic feature of DLA is that mo
of the growth takes place in an active zone near the ou
radius of the cluster. This active zone moves outwa
leaving behind an extinct, in an asymptotic sense, regi
This screening of the inner region by the tips is the b
sic reason for the fractal branching of DLA growth. T
quantify such an edifice, we thus need large DLA cluste
(M ­ 106 particles in the present study) so that the inn
© 1996 The American Physical Society 251
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inactive region contains several (here about six) gene
tions of branching.

We start by presenting numerical evidence fo
log-periodic corrections to the main scaling. Fo
this we construct the local dimension defined b
Drslogrd ­ d logMsrdyd logr . A typical realization
is shown in Fig. 1, where it is clear thatDr is not a
constant in the scaling regimel , r , R (whereR is the
radius of gyration of the cluster), but oscillates around th
asymptotic value.1.65. From the expression of physica
quantities in systems exhibiting DSI, we make the ansa

Msrd ~ rD0 f1 1 C coss2pf2 logrdg . (1)

The use of the index2 for f2 will become clear from
Eq. (5) below. Assuming that the correction is weak
we obtainDrslogrd . D0 2 2pCf2 sins2pf2 logrd. The
ansatz (1) can obviously be generalized to include furth
(damped) oscillatory components. In what follows, w
will clearly identify another frequencyf1. To investigate
the validity of Eq. (1), a Savitzky-Golay smoothing filter
was applied to the dataMsrd in order to obtain a good
numerical estimate of the local derivativeDr . This filter-
ing method approximates the data locally (correspondi
to some user-chosen window) with annth degree polyno-
mial preserving up to thenth moment of the data. Hence it
has the advantage over, for instance, a moving average
ter that the magnitude of the variations in the data, i.e., t
value of the local extrema, is preserved to a large exte
This means that the amplitude of the expected oscillatio
is not severely reduced and can be measured accurat
Figure 1 is an example obtained with a window ofø0.5
and using a six-degree polynomial. (We have checked th
our results are robust with respect to reasonable chan
of these parameters.) To extract the frequency(ies) of t
observed oscillations, a Lomb (normalized) periodogra

FIG. 1. Example of the local dimensionDr slogrd ­
d logMsrdyd logr as a function of logr for a typical DLA
cluster. The numerical estimate of the derivative has be
obtained with a Savitsky-Golay smoothing filter.
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was used. This method makes a local least-square fi
the data to a simple cosine function (with a phase) fo
given frequency range. It was preferred to other stand
techniques, such as the fast Fourier transform, due to
impressive ability of finding periodic structures in sma
noisy data sets of unevenly sampled data. We analy
350 DLA clusters of106 particles and found systematicall
that their periodogram presents two main peaks. The
quenciesf of these two main peaks were recorded and
histogram of these frequencies is shown in Fig. 2. Tw
peaks atf1 . 0.6 6 0.1 and f2 . 1.3 6 0.1 are clearly
visible and their existence is statistically significant (th
difference between the maxima and minimum is larger th
two standard deviations).

The appearance of DSI in DLA can be explained fro
previous results on wavelet analysis, and the frequenc
f1 andf2 estimated. To do so, we assume that the DL
inner structure can be characterized by a critical point
curring at l

r ! 0 (with r ø R). We use the results of
the wavelet transform modulus maxima (WTMM) repre
sentation, which has been applied to the DLA azimuth
Cantor set [13]. This set is defined by the intersecti
of a DLA’s inner-cluster structure with a circle of radiu
r0 ø R (in practice,r0 ­ 480 particle sizes, containing
ø 8 3 104 particles forM ­ 106 DLA clusters). In the
limit of r0 ! 1` (r0yR ø 1), this set becomes a gen
uine Cantor set of zero measure and fractal dimens
D0 2 1, defined byMsrd , rD0 for l , r , R. Using
the WTMM representation, the hierarchical structure
DLA azimuthal Cantor sets can be modeled by a m
tiplicative process [13] expressed mathematically by t
piecewise linear hyperbolic map:

T sxd ­

Ω
lx, 0 , x , l21,

l2sx 2 1d 1 1, 1 2 l22 , x , 1, (2)

FIG. 2. Histogram of the frequencies found in the loc
dimensionDr slogrd ­ d logMsrdyd logr as a function of logr,
as illustrated in Fig. 1. The frequencies have been obtained
calculating Lomb’s periodogram onDr .
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with l ­ 2.2 6 0.2. The Cantor sets are then its invar
ant measure. This parametrization (2) of the WTM
representation is used in the following to obtain quan
tative predictions.

Let N sad be the number of maxima of the WTMM
skeleton at scalea. This number roughly correspond
to the number of branches of the DLA cluster at sca
a and at a distancer0 from the center. From Eq. (2)
it is straightforward to show thatN sad satisfies the
“Fibonacci rule” [13]:

N sad ­ N slad 1 N sl2ad . (3)

Using our assumption of a critical point andMsrd ,
rN s 1

r d, Eq. (3) translates into

Msrd ­ lMx

µ
r
l

∂
1 l2M

µ
r
l2

∂
, (4)

where we substituteda !
1
r . Of course, these equation

are only approximate descriptions of the noisy structu
inherent in the stochastic DLA growth process. Looki
for a solutionMsrd , rD, we findMsrd ­

P1`
n­2` cnrDn ,

where

Dn ­ 1 1 s21dn logf

logl
1 i

np

logl
. (5)

f . 1.618 is the golden mean andn an integer. The
leading term of the series inMsrd is Msrd . rD0 ,
with D0 ­ 1 1 logfy logl . 1.65, which recovers the
known value for the fractal dimension of DLA cluster
D0 is the real part of all even-order dimensionsD2n.
Notice that the real parts of even-order and odd-or
dimensions are codimensions of each other: ResD2n11d ­
2 2 ResD2nd . 0.35.

What Eq. (5) teaches us is the existence of modulati
to the leading power law behavior ofMsrd in the form
of periodic (in logr) corrections to scaling. Indeed, th
real part of a term likerDR 1iDI

is simplyrDR
cossDI logrd,

showing that a log-periodic correction to the scaling
Msrd amounts to considering a complex fractal dimensi
and vice versa. The existence of imaginary parts in
dimensions (5) stems from the discrete scaling explicit
the writing of Eqs. (3) and (4). This can be put in an ev
clearer way by noting that, in the limitr ! `, Eq. (4)
reduces to

Msrd . flMx

µ
r
l

∂
. (6)

This is nothing but a discrete renormalization gro
equation on the observableMsrd showing that the flow
acting on the “control parameter”r is simply related to the
hyperbolic mapT sxd, and the dominant scaling structur
of the DLA clusters is governed by the Lyapunov numbe
l and l2 of T sxd. The solution of the RG equation i
Msrd . rD, with D obeying

lD21

f
­ 1 , (7)

whose general solution recovers the sethD2nj.
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In sum, two fundamental frequencies are predicte
namely,f1 ­ 1y2 logl for D2n11 and f2 ­ 1y logl for
D2n. The first frequency reflects the fact that the conve
gence towards the fixed point atr ! 1`, corresponding
to the existence of the second frequency, is alternate w
a subharmonic frequency. Using the independent nume
cal estimation ofl . 2.2 [13] leads tof1 . 0.6 andf2 .
1.3 in excellent agreement with the previous numerical r
sults. These values translate intoDI

1 ­ 2py2 logl . 4
and DI

2 ­ 2py logl . 8 for the imaginary part of the
new scaling exponents.

This simple model would predict that the amplitud
of the leading log-periodic correction with frequencyf2
is constant [Eq. (1)], and only the next correction t
scaling is damped, adding in Eq. (1) a term of the for
r2d coss2pf1 logrd, where d ­ D0 2 DR

1 ø 1.3. This
does not agree with Fig. 1 where an exponential damp
(in logr) of all the oscillations is clearly visible as the
critical point is approached. The reason is that, up to no
we had assumed that the scaling factorsl and f were
constant. In fact, they fluctuate from sample to sample, a
when the scale is changed. It is not clear how to take the
fluctuations into account explicitly. However, variou
simple models of fluctuations [8] suggest the existence o
renormalizationof the dimensions by the disorder, leadin
to the expression

Msrd ~ rD0 f1 1 Cr2a coss2pf2 logrdg , (8)

Here a ­ D0 2 D0R
2 . 0, where we have allowed

for the renormalization of the even-order dimension
(D0R

2 , DR
2 ).

In order to study this effect, we have performed a
average of all 350 DLA clusters of the absolute valu

FIG. 3. The local dimension averaged asD̄r ­
kjDr slogrd 2 kDr slogrdljl 1 kDr slogrdl as a function of
logr. The average is over more than 350 DLA clusters. Th
data have been fitted to the equationa 1 be2a logr , giving
a ø 1.80, b ø 0.6, anda ø 0.7.
253
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of the oscillations. The quantitȳDrslogrd ­ kDslogrdl 1

kjDslogrd 2 kDslogrdljl is shown in Fig. 3. As expected
for finite samples the oscillations have been most
erased, but we clearly observe the predicted exponen
decay (in the logr variable). The best fit done in the rang
logr . 2 and shown in the figure givesa ø 0.7, yielding
D0R

2 ø 1. For smaller logr , we find a faster decay
with a larger characteristic exponenta . 1.3, which
corresponds probably to the correctiond ­ D0 2 DR

1
induced by the odd-order dimensions.

The renormalization ofDR
2 into D0R

2 can be qualita-
tively understood as follows. The distribution ofl and
f [13] can be approximated by a product of three Gaus
ian functions, respectively, in terms of the variables logl,
logf, and log f

lD21 peaked, respectively, atl0 ­ 2.2,
f0 ­ 1.6, and f0

l
D21
0

­ 1, with a common standard devi-

ations2 ­ 0.23 6 0.03. If we then make a random mul-
tiplicative renormalization group ansatz and consider t
quantity kMsrdl averaged over this distribution, one ca
show [8] that Eq. (7) is replaced byø

f

lD21

¿
­ 1 . (9)

This yields the quantization equation

1
2

logsf0yl
D2n21
0 d 1 ss2y2dfsD2n 2 1d2 1 1g

1 1 s1y2d sD2n 2 1d2 ­ 2ipn ,

with n integer. Fors ! 0, we recover the previous
result for D0. With the numerical values fors, l0,
andf0, Eq. (9) yieldsD0 ­ 1.9 6 0.3 (obtained forn ­
0), which, considering the crudeness of this model,
reasonable. Forn ­ 1, we getD2 ­ 0.9 6 0.3 2 is7 6

1d. The imaginary part is within the error bars equa
to our previous measurement forf2. The real part of
D2 is miraculously close to what we found numericall
(D0R

2 . 1) considering the crudeness of the ansatz.
Observe that, because of the disorder-induced ren

malization ofDR
2 , all corrections are damped and, in th

limit of infinite sizes, continuous scale invariance is re
coved in DLA.

The existence of the complex correction to scalin
with a real part around1 could be at the origin of the
uncertainty remaining in the literature on the precise val
of the DLA fractal dimension [14]. Indeed, depending o
the techniques used to estimate the slope of log-log plo
one expects to get values for the fractal dimension clo
to but below the lead scaling.

The physical origin of the discrete scaling invariance
DLA clusters can be tracked back to the way success
screening of competing growing branches occurs. Ta
two neighboring branches of similar size. After a while
one will win over the other, screen it, and grow at it
expense. As a DLA cluster grows, there is a success
of such rather brutal “discrete” screening events betwe
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the largest existing branches, and the size of the branc
at which these intermittent screening events occur follo
an approximate geometrical series of ratiol. This picture,
which should also apply for all branches at smaller sca
was suggested in [13] as a reasonable scenario leadin
a Fibonacci structural ordering. Our analysis has sho
that this geometric intermittent branching process leads
a discrete scale invariance.
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