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Complex Fractal Dimensions Describe the Hierarchical Structure
of Diffusion-Limited-Aggregate Clusters
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We analyze large diffusion-limited aggregates and uncowdis@etescaling invariance in their inner
structure, which can be quantified by the introduction of a setashplexfractal dimensions. We
provide a theoretical framework and prediction of their values based on renormalization group theory
and a previous wavelet analysis.
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In the context of the renormalization group theory of nonlocality). Such theories have a fixed point action,
critical phenomena, self-similarity at the critical point is which is fully scale invariant, but some observables
characterized by an invariance with respect to arbitrarynay have complex dimensions, implying that their Green
magnifying factors, i.e.continuousscale invariance. In functions are invariant under discrete rescalings only.
contradistinction, a system exhibits discrete scale invariin these systems, DSI is “spontaneously generated” by
ance (DSI) if it is invariant under discreteset of dilata- the dynamics of the system. For instance, in disordered
tions only. Formally, DSI leads tcomplexexponents and systems, DSl is probably associated with the spontaneous
log-periodic corrections to scaling [1]. breaking of replica symmetry, which entails a hierarchical

DSI has long been restricted to “man-made” systemsprganization of phase space [9]. The fact that disorder
like regular lacunar fractals and hierarchical systemscan lead to the spontaneous appearance of a hierarchy of
where it is built in their mere definition. To our knowl- scales can easily be seen in one-dimensional Brownian
edge, the first theoretical suggestion of its relevance tonotion in random media [10].
physics was put forward by Novikov [2] to describe We consider the diffusion-limited-aggregation (DLA)
the small-scale intermittency in turbulent flows. More model [11] which allows for a much more complete nu-
generally, some out-of-equilibrium systems presentingnerical analysis than animals and is the archetype of com-
intermittency have recently been found to have complexylex fractal growth phenomena to which the foregoing
exponents. Rupture in strongly disordered systems is mupture problems belong [12]. We show by a careful nu-
sort of dynamical critical point [3] exhibiting strong inter- merical analysis that the interior of DLA clusters does
mittency in the failure process: Logarithmic periodicities exhibit DSI spontaneously and is characterized by a dis-
in the rate of acoustic emissions preceding the rupture haverete set of complex fractal dimensions, the first being the
been measured for the case of pressure vessels composelial realDy = 1.65 + 0.05 [13—15]. The others con-
of Kevlar and carbon-fiber-reinforced resin [4]. A similar trol the log-periodic fluctuations in the variation of the
behavior has been documented on foreshock activitynass contained in a disk as a function of its radius. The
preceding large earthquakes in California and the Aleutiamppearance of DSI is then connected with the results of a
Islands [5] and on fluctuations in the chloride and sulfaterecent wavelet transform analysis [13]. These are used to
ion concentrations of groundwater issuing from wellscompute the spectrum of the complex dimensions, in good
located near the epicenter of the recent Kobe earthqualagreement with numerical results.
in Japan [6]. In addition, complex exponents appear The off-lattice DLA clusters that we study are con-
also in the seemingly different contexts efexpansion structed by making a single particle of sizdiffuse from
calculations for disordered systems [7] and the statistics o large distance until it makes contact with the boundary
“animals” (connected clusters on a percolation lattice) [8].of the cluster at which it sticks to form a new boundary

These examples prompt a reconsideration of the issugnd so forth. A characteristic feature of DLA is that most
of DSI and complex exponents. In particular, one wouldof the growth takes place in an active zone near the outer
like to understand when they occur and to have a tractabledius of the cluster. This active zone moves outward,
model at hand to study them. On the theoretical sideleaving behind an extinct, in an asymptotic sense, region.
as discussed in [8], complex exponents are a naturdlhis screening of the inner region by the tips is the ba-
property of nonunitary Euclidean field theories, relevantsic reason for the fractal branching of DLA growth. To
to describe most disordered systems (due to the replicguantify such an edifice, we thus need large DLA clusters
averaging) as well as geometrical systems (due to théW = 10° particles in the present study) so that the inner

0031-900796/76(2)/251(4)$06.00 © 1996 The American Physical Society 251



VOLUME 76, NUMBER 2 PHYSICAL REVIEW LETTERS 8 ANUARY 1996

inactive region contains several (here about six) generawas used. This method makes a local least-square fit of
tions of branching. the data to a simple cosine function (with a phase) for a
We start by presenting numerical evidence forgiven frequency range. It was preferred to other standard
log-periodic corrections to the main scaling. Fortechniques, such as the fast Fourier transform, due to its
this we construct the local dimension defined byimpressive ability of finding periodic structures in small
D,(logr) = dlogM(r)/dlogr. A typical realization noisy data sets of unevenly sampled data. We analyzed
is shown in Fig. 1, where it is clear tha, is not a 350 DLA clusters ofl 0° particles and found systematically
constant in the scaling reginie< r < R (whereR isthe that their periodogram presents two main peaks. The fre-
radius of gyration of the cluster), but oscillates around thejuenciesf of these two main peaks were recorded and the
asymptotic value=1.65. From the expression of physical histogram of these frequencies is shown in Fig. 2. Two
guantities in systems exhibiting DSI, we make the ansatzpeaks atf; = 0.6 = 0.1 and f, = 1.3 = 0.1 are clearly
Do visible and their existence is statistically significant (the
M(r) o r™(1 + € cos2m f>10gr)]. @) difference between the maxima and minimum is larger than
The use of the index for f, will become clear from o standard deviations).
Eq. (5) below. Assuming that the correction is weak, The appearance of DSI in DLA can be explained from
we obtainD, (logr) = Dy — 2w Cf,sin2w f>1ogr). The  previous results on wavelet analysis, and the frequencies
ansatz (1) can obviously be generalized to include furthey, and f, estimated. To do so, we assume that the DLA
(damped) oscillatory components. In what follows, wejnner structure can be characterized by a critical point oc-
will clearly identify another frequency,. To investigate curring atl = o (with » < R). We use the results of
the validity of Eq. (1), a Savitzky-Golay smoothing filter e \avelet transform modulus maxima (WTMM) repre-
was applied to the data/(r) in order to obtain a good gentation, which has been applied to the DLA azimuthal
numerical estimate of the local derivatizg. This filter-  cgntor set [13]. This set is defined by the intersection
ing method approximates the data locally (correspondingt 5 p| A's inner-cluster structure with a circle of radius
to some user-chosen window) with ath degree polyno- .« g (in practice,r, = 480 particle sizes, containing
mial preserving up to theth moment of the data. Henceit < g » 104 particles forM = 10° DLA clusters). In the
has the advantage over, for instance, a moving average fitm;it of ro — 4+ (ro/R < 1), this set becomes a gen-

ter that the magnitude of the variations in the data, i.e., th%ine Cantor set of zero measure and fractal dimension
value of the local extrema, is preserved to a large extenty  _ | defined byM(r) ~ r? for | < r < R. Using

Thls means that the amplitude of the expected oscillationg,e \wTMM representation, the hierarchical structure of
is not severely reduced and can be measured accurately; o azimuthal Cantor sets can be modeled by a mul-

Figure 1 is an example obtained with a window=00.5 slicative process [13] expressed mathematically by the
and using a six-degree polynomial. (We have checked th?ﬂecewise linear hyperbolic map:

our results are robust with respect to reasonable changes .
of these parameters.) To extract the frequency(ies) of the T(x) = { 5 Ax, 0 <_J§ <A, )
observed oscillations, a Lomb (normalized) periodogram Pe-D+1 1-A"<x<1,
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FIG. 1. Example of the local dimensionD,(logr) = FIG. 2. Histogram of the frequencies found in the local

dlogM(r)/dlogr as a function of log for a typical DLA  dimensionD,(logr) = dlogM(r)/d logr as a function of log,
cluster. The numerical estimate of the derivative has beems illustrated in Fig. 1. The frequencies have been obtained by
obtained with a Savitsky-Golay smoothing filter. calculating Lomb’s periodogram ab., .
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with A = 2.2 = 0.2. The Cantor sets are then its invari- In sum, two fundamental frequencies are predicted,
ant measure. This parametrization (2) of the WTMMnamely, f; = 1/2loga for D,,+; and f, = 1/logA for
representation is used in the following to obtain quanti-D,,. The first frequency reflects the fact that the conver-
tative predictions. gence towards the fixed point at— +, corresponding
Let N (a) be the number of maxima of the WTMM to the existence of the second frequency, is alternate with
skeleton at scale:. This number roughly corresponds a subharmonic frequency. Using the independent numeri-
to the number of branches of the DLA cluster at scalecal estimation ofA = 2.2 [13] leads tof; = 0.6 andf; =
a and at a distance, from the center. From Eg. (2), 1.3 in excellent agreement with the previous numerical re-
it is straightforward to show thatN (a) satisfies the sults. These values translate inkd = 27 /2logA = 4
“Fibonacci rule” [13]: and D} = 27 /logA = 8 for the imaginary part of the
N(a) = N(Aa) + N(A\2a). (3) new gcal!ng exponents. _ '
Using our assumption of a critical point and(r) ~ This S|mple model .WO.U|d predlpt tha}t the amplitude
N(l,) Eq. (3) translates into pf the leading log-periodic correction with frequenﬁy
r ) B is constant [EqQ. (1)], and only the next correction to
M(r) = AMx<L> + /\2M<L>, (4) scaling is damped, adding in Eq. (1) a term of the.form
A2 r~%cog2x flogr), where 6 = Dy — Df = 1.3. This
where we substituted — . Of course, these equations d0€s not agree with Fig. 1 where an exponential damping
are only approximate descriptions of the noisy structure§in 109r) of all the oscillations is clearly visible as the
inherent in the stochastic DLA growth process. Lookingcr't'cal point is approached. The reason is that, up to now,

for a solutionM (r) ~ r?, we findM(r) = 37 corPr, W€ had assumed that the scaling factareind ¢ were
where constant. Infact, they fluctuate from sample to sample, and
logé nar when the sca_le is changed. It is not clear how to take_ these
D,=1+(—1)'——+i (5) fluctuations into account explicitly. However, various

1.

logA loga simple models of fluctuations [8] suggest the existence of a
¢ = 1.618 is the golden mean and an integer. The renormalizatiorof the dimensions by the disorder, leading
leading term of the series i (r) is M(r) = r®, to the expression
with Dy = 1 + log¢/loga = 1.65, which recovers the w
known value for the fractal dimension of DLA clusters. M(r) = r?[1 + Cr™* cod2m f>1ogr)], 8)
Dy is the real part of all even-order dimensiofs,. Here « = Dy — Df >0, where we have allowed
Notice that the real parts of even-order and odd-ordefor the renormalization of the even-order dimensions
dimensions are codimensions of each othe(ZRg 1) =  (DF < DX).
2 — ReD,,) = 0.35. In order to study this effect, we have performed an

What Eq. (5) teaches us is the existence of modulationsgverage of all 350 DLA clusters of the absolute value
to the leading power law behavior @f(r) in the form
of periodic (in log’) corrections to scaling. Indeed, the
real part of a term like>" +2" is simply r2“cog D’ logr),

showing that a log-periodic correction to the scaling of 257 ' ’ ' ' '
M (r) amounts to considering a complex fractal dimension aal i
and vice versa. The existence of imaginary parts in the )
dimensions (5) stems from the discrete scaling explicit in 93k |
the writing of Eqgs. (3) and (4). This can be putin an even '
clearer way by noting that, in the limit — «, Eq. (4) 0ol i
reduces to (D, '
M(r) = ¢/\Mx<§>. (6) 21y ]
This is nothing but a discrete renormalization group 2r ]
equation on the observablé (r) showing that the flow
acting on the “control parameter”is simply related to the 1.9r :
hyperbolic mapr'(x), and the dominant scaling structure v N
of the DLA clusters is governed by the Lyapunov numbers 18— 2 3 4 5 s
A and A2 of T(x). The solution of the RG equation is In(r)
M(r) = r”, with D obeying FIG.3. The local dimension averaged asD, =
APl (ID,(logr) — (D,(logr))|) + (D,(logr)) as a function of
=1, (7) logr. The average is over more than 350 DLA clusters. The
¢ data have been fitted to the equatiant+ be *'°97, giving
whose general solution recovers the {§21,}. a =~ 180,b =06, anda =~ 0.7.
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of the oscillations. The quantit®,(logr) = (D(logr)) +  the largest existing branches, and the size of the branches
(ID(logr) — (D(logr))|) is shown in Fig. 3. As expected at which these intermittent screening events occur follow
for finite samples the oscillations have been mostlyan approximate geometrical series of ratioThis picture,
erased, but we clearly observe the predicted exponentiathich should also apply for all branches at smaller scale,
decay (in the log variable). The best fit done in the range was suggested in [13] as a reasonable scenario leading to

logr > 2 and shown in the figure gives = 0.7, yielding
D = 1. For smaller log, we find a faster decay
with a larger characteristic exponemt = 1.3, which
corresponds probably to the correctidgh= D, — D¥
induced by the odd-order dimensions.

The renormalization o into D can be qualita-
tively understood as follows. The distribution afand

d

a Fibonacci structural ordering. Our analysis has shown
that this geometric intermittent branching process leads to
a discrete scale invariance.
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ian functions, respectively, in terms of the variableslpg
logy, and Iog% peaked, respectively, aty = 2.2,

¢o = 1.6, and AZ?& = 1, with a common standard devi-
ationo? = 0.23 = 0.03. If we then make a random mul-
tiplicative renormalization group ansatz and consider the

quantity (M (r)) averaged over this distribution, one can
show [8] that Eq. (7) is replaced by

¢
</\D1> - ©
This yields the quantization equation
1log(go/Ag" ") + (02/2)[(Day = D> + 1] _ .
2 1+ (1/2) (D2 — 1)2 v

with n integer. Foro — 0, we recover the previous
result for Dy. With the numerical values fow, Ag,
and ¢, Eq. (9) yieldsDy, = 1.9 = 0.3 (obtained fom =

0), which, considering the crudeness of this model, is
reasonable. Far = 1, we getD, = 0.9 = 0.3 — i(7

1). The imaginary part is within the error bars equal
to our previous measurement fgs. The real part of
D, is miraculously close to what we found numerically
(DF = 1) considering the crudeness of the ansatz.
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