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Composite Power Laws in Shock Fragmentation
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Inspired by the discovery of Oddershede al. [Phys. Rev. Lett71, 3107 (1993)] concerning the
dimensionality dependence of mass distributions after shock fragmentation, we have performed further
experiments using thick plates of dry clay. We observe mass distributions with composite power laws,
i.e., different exponents for fragments larger and smaller than the plate thickness. This implies that
the dominant exponent for any given fragment mass corresponds to the dimensionality of the original
object on the length scale of the fragment considered. We study two profoundly different models, both
of which agree qualitatively with the observed features. Thus the measured mass distribution tells little
about the mechanisms of the fragmentation process.

PACS numbers: 46.30.Nz, 91.60.Ba

Shock fragmentation of solid objects has been studfall onto a hard floor. The material used was dry clay,
ied extensively in the laboratory [1,2] and in geologi- and the height of the fall was 2.0 m. The fragments were
cal and planetary systems [1,3]. The persistent patteroollected and their mass distribution was recorded. We
in the observations is a power law in the mass distribuconcentrated on objects in the form of square plates with
tion. The exponeng in the differential mass distribution thicknesses in the range 0.02—-0.14 times the side length.
n(m) « m~ B is observed to be between 1.5 and 2 for aDimensions and masses of the clay plates are given in
large variety of brittle materials. Essential new informa-Table II.
tion on the dependence of this exponent on the shape of The mass distribution of fragments can be described
the fragmented body was reported by Oddershede, Dby the cumulative distributiod (m), i.e., the number of
mon, and Bohr [4]. Their studies of fragmentations ofobserved fragments with mass larger than the mass
cubes, plates, and rods show thatdecreases markedly Reference [4] uses the quantity(m) = F(m)/m. We
with decreasing dimensionality. They introduced a shap@refer to useF(m) in order to obtain clearer graphical
parameterd,, which for a box of dimensiom X b X ¢  representations. We show in Fig. 1 three distributions
is equal tol + 2(ab + be + ca)/(a*> + b> + ¢?). The  F(m) of fragments from plates with different thicknesses.
values for cubes, thin plates, and thin rods are 3, 2, and(m) is the integral ofn(;m) and so a double logarithmic
1, respectively. The observed values@for integer val-  plot of F(m) has the slopé — g, if n(m) is proportional
ues ofd,, are given in Table I. For objects of arbitrary to m 5.
forms the shape parameter may be noninteger. Odder- Each distribution has a cutoff at large masses due to the
shede, Dimon, and Bohr [4] find that the mass distribufinite size of the object and a cutoff at small masses due
tion is characterized by a simple power law on all lengthto poor sampling. In the following analysis we consider
scales also for noninteger values &f. the region between these two cutoffs. It is clear from

In the present work we investigate in detail the frag-Fig. 1 that the power law is composite, i.e., the slopés
mentation of thick plates giving values df, somewhat and B~ for large and small fragments, respectively, are
larger than 2. We concentrate our experiments on platedifferent. We give in Table Il the exponents found in the
with thicknesses and applied impacts giving suitable fracpresent work. The mass, separating the low-slope and
tions of fragments smaller than the plate thickness. Outhe high-slope region was found. Table Il gives values of
results show that the universal scaling claimed in Ref. [4}n, and of the ratiad;/c, whered, is the diameter of the
does not hold for plates of dry clay and valuesdgf in ~ sphere with masa:, (using a mass densijy of 2 g/cm?),
the range 2.1-2.3 (thick plates). We observe instead andc is the plate thickness.
composite power law with exponents for large and small It is seen from Tables | and Il that the exponegts
fragments corresponding to those of two and three dimerfor large fragments correspond to two dimensions and the
sions, respectively. exponentsB~ for small fragments correspond to three

We report here the results of six fragmentation experidimensions. The fragment size separating the two- and
ments similar to those of Ref. [4], i.e., we let solid objectsthe three-dimensional behavior is seen to be related to the

TABLE I. Values of the exponeng8 from experiments reported in Ref. [4].

d,, = the dimensionalityD 1 2 3
Experimental value of8 [4] 1.0 = 0.1 1.2 £ 0.1 1.55 £ 0.1
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TABLE Il. Results from fragmentation of 6 plates: masses, linear dimensioris and c,

and exponentg*, 8~ above and below a transitional mass d, is the diameter of a sphere
with massm, (p = 2 g/cn?). The smallest fragments recorded in case of plates 7 and 8 were
too large to allow a reliable determination @f and 8.

Object Mass a b c m;

@) (cm) (cm) (cm) @) di/c B~ B*
Plate 2 540.2 19.7 19.5 0.79 0.08 0.53 1.62 1.19
Plate 3 590.1 19.5 19.5 0.83 0.1 0.55 1.50 1.17
Plate 4 650.8 28.5 28.5 0.43 0.035 0.76 1.67 1.12
Plate 6 920.4 15.7 15.0 2.09 0.9 0.44 1.50 1.19
Plate 7 393.5 19.5 19.5 0.52 1.22
Plate 8 237.0 19.5 11.8 0.53 1.27

plate thickness. We find that the diameitkrof a sphere bit map. The transform of the picture in Fig. 2(a) is
with the massn, of the observed transition mass is 0.44—shown in Fig. 2(b). Note that the axes here are wave
0.76 times the plate thickness (see Table II). vector componentsk,, k,), and that the origin in wave
We conclude from these findings th#tte exponent vector space is in the middle of the picture. We note here
dominant in the formation of any given fragment isthe presence of pronounced spots in wave vector space
determined by the dimensionality of the original object[Fig. 2(b)]. Thisis an indication of standing waves prior to
on the length scale of the fragment considerdd.other  fragmentation. We assign the spots in wave vector space
words, the fragmentation mechanism depends on the loca modes responsible for the fracture. This indicates that it
rather than the global properties of the original object.  takes more than one vibrational cycle to build up the stress
After some of the fragmentations were formed, weto the yield strength of the material.
reassembled the largest fragments, thereby establishingWe propose here two fundamentally different models
the coarsest part of the crack pattern. In Fig. 2(a) wegiving the same qualitative behavior as measured, in par-
show a crack pattern obtained by taking a photograplicular, the composite power law for mixed dimensionality
of the reassembled plate 6. This picture and pictures dfind the fact that exponet increases with dimensional-
other reassembled plates were subject to a wave analysig. The first is a cascade type model and the second is
performed in the following two steps. First, we digitized based on a classification according to standing waves.
the image of the crack patterns intaz8 X 128 grey-tone The first model is based on the assumption that the
bit map (resolution 8 bits per pixel). Then, we performedfragmentation process is a series of binary fissions. Here
a two-dimensional discrete Fourier transformation of the, ande are the mass and density of mechanical energy,
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FIG. 1. Observed cumulative distributions(m) defined as the number of fragments with mass larger than(a) Plate 4
(thickness 0.43 cmin, = 0.035 g); (b) plate 2 (thickness 0.79 crmm, = 0.08 g); (c) plate 6 (thickness 2.09 crm, = 0.90 Q).
Note the correlation between the plate thickness and the transitionsmaisiding the two power law regions.
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A B Thus
k|
]» B=2-vy/D. 3)
nﬁ* If we assumey to be about 1, independent of dimension-
‘ ality, we get
1.0 forD =1,
— k, B=415 forD =2, 4)
1.66 forD = 3.

FIG. 2. (a) Crack pattern of plate 6. (b) Fourier transform of
the pattern in (a). The black spots correspond to wave vector

components with high absolute value. Note that the temporal features in the fracture process
are not specified in the standing-wave model. As the

respectively, of the object subject to fission. In threefracture process is probably best described as a series of
dimensions we assume the following in each fission: (ievents, the arguments about the density of modes should
The fragments have masses: and (1 — a)m wherea  be applied to the individual events.
is smaller than £2. (i) The loss of mechanical energy is  Comparing Egs. (1) and (4) with Table | it is seen that
s(am)?3, a quantity which is roughly proportional to the models are too crude to give the measured exponents
the surface of the smallest fragment. contains the in full detail; but both models exhibit universal scaling
formation energy per unit area during fracture, the masand give exponents which increase with dimensionality.
density, and a geometrical factor. Then the average In summary, we have investigated the mass distribution
density of mechanical energy after the fission consideregdfter shock fragmentation of plates of dry clay. The most
is reduced to a value given by = e — s(am)?3/m. important experimental results are (1) there is a composite
Let am.x be the value ofa giving ¢/ = 0. (i) @ is power law in the mass distribution of fragments from
chosen randomly between O agh.x or 0.5, whatever thick plates, and (2) the fragment size of the transition
is smallest. (iv) Both fragments have the reduced energgegion scales with the plate thickness. These findings
densitye’. indicate that the exponeift is determined by local rather

In the case of one and two dimensions, the above expahan global features of the original object. We have
nent 2/3 should be replaced by zero ant]respectively. investigated two models giving universal scaling in case
We have performed Monte Carlo simulations along theof “unmixed” dimensionalities. At the same time they
above lines and find universal scaling with the following account for the composite nature of the mass distribution

exponents: from objects with “mixed” dimensionality.
1.0 forD =1, We do not rank one model higher than the other.
B = {1.1 forD =2, (1) Instead we conclude from the theoretical part of the
1.15 forD =3, present work that the observed features can be explained

by a large class of models, and so the mass distribution

whereD is the dimensionality. Somewhat higher valuesjiset is a poor handle for exploring the detailed dynamics

of B are achieved if the two fragments contain equal, the fragmentation process.

residual energy rather than equal energy density. The authors are grateful for valuable discussions with
The second model is inspired by the analysis of they Haack P. Sibani. Mads Sckerl. and B. @rsted.
coarse part of the crack pattern, and is based on the ’ ' '

assumption that standing waves play an important role.
The wave responsible for the formation of a fragment of
massm is assumed to have a wave length proportional to
m'/P | i.e., a wave vectok proportional tom /2. The

further assumptions are as follows: (i) The probability
that any mode produces a fragment depends only o
k and is assumed to be proportional .0”. Here y

is a phenomenological parameter. (ii) The density of
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