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Carrier Wave Shocking of Femtosecond Optical Pulses
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Numerical integration of Maxwell’s equations for propagation of a femtosecond pulse in a medium
with linear Lorentz response and a Kerr nonlinearity shows shock formation on the underlying carrier
wave prior to the envelope shock. The carrier shock is characterized by the appearance of a strong
third harmonic pulse, whereas the envelope shock appears later as spectral broadening and modulatio
of the fundamental and higher harmonic spectral features.

PACS numbers: 42.65.Ky
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Advances in laser technology in the past decade h
made possible the production of pulses which contain a
optical cycles [1]. Although such ultrashort pulses cont
small amounts of optical energy, enormous intensi
exceeding1 TWycm2 can arise and the accompanyi
intensity-dependent corrections to the index of refract
are such that one can expect novel nonlinear phenom
such as shock formation over very short propaga
lengths. It has been suggested in [2] that an enve
shock was observed experimentally [3] and that this ca
understood using standard envelope approximations [
to Maxwell’s equations. Laser-induced breakdown (LI
cannot be ruled out at such very high peak intensit
but there is evidence to show that for such short
hence low energy pulses the cascade-avalanche pa
unlikely and multiphoton processes are more likely to le
to breakdown [5]. Indeed, very recent experiments
water using 100 fs pulses indicate that local peak fi
intensities can exceed1013 Wycm2 in the focal region
with incident pulse absorption being less than5% [6].
Moreover, breakdown becomes a sensitive function
optical wavelength. Shock formation on the carrier wa
is expected therefore to compete with other physics du
the critical collapse of femtosecond duration optical pul
in optically transparent media where the local intensity
the critical collapse distance can become very large.

The above breakdown scenario is extremely com
cated, so we confine our attention here to plane w
propagation for simplicity and show that an optical carr
shock can arise in a medium with an instantaneous K
nonlinearity. Dispersion plays an important role in sho
regularization (smoothing) and influences the signatur
the carrier shock. As dispersion is typically strong for su
short optical pulses [the dispersion length scales ask00yt2

p,
wherek00 is the leading order contribution to the group v
locity dispersion (GVD) andtp is the characteristic puls
length], phase mismatch leads to the separation in time
strong third harmonic optical pulse moving with a differe
group velocity from the fundamental. For very weak d
persion, a component of the third harmonic pulse mo
with the fundamental and, in the dispersionless case
higher harmonics of the fundamental are phase matc
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and see explosive growth. As the phenomena we are
cerned with occurs on the scale of the carrier wavelen
no envelope approximations are valid and one must re
to a numerical integration of Maxwell’s equations. N
merical schemes for the integration of Maxwell’s equatio
have been refined in the past few years [7] to allow for
efficient integration of media with memory in both the lin
ear and nonlinear polarizations.

We restrict our attention to nonmagnetic dielectric m
dia with no free charges, in which case we have
Maxwell’s equations

≠By

≠t
­

≠Ex

≠z
,

≠Dx

≠t
­

1
m0

≠By

≠z
, (1)

where all quantities above and in the following are
MKS units. The medium is modeled by a single Loren
oscillator plus an instantaneous Kerr nonlinearity

Dxsz, td ­ e0

(
´`Exsz, td 1

Z t

2`
dt0 xst 2 t0dExsz, t0d

1 x s3dE3
x sz, td

)
, (2)

with the linear susceptibility given byxstd ­ v2
pe2dty2 3

sins
p

v2
0 2 d2y4 tdy

p
v2

0 2 d2y4, fx̂svd ­ v2
pysv2

0 2

idv 2 v2dg, v2
p ­ s´s 2 ´`dv2

0 , ´s and ´` are the
static and infinite relative permittivities, respectively, a
v0 the resonance frequency of the Lorentz oscillato
Maxwell’s equations are solved by either a second or
in time, second order in space [(2,2)] finite difference tim
domain method [8] or a second order in time, fourth ord
in space [(2,4)] scheme [9]. The numerical dispers
inherent in these methods has recently received a g
deal of attention [10], and we have chosen our spa
discretizations accordingly.

The convolution integralPL ­ e0

R
dt0 xst 2 t0dExst0d

in Eq. (2) is most efficiently solved by replacing it wit
the equivalent second order ordinary differential equat
[7,11]

1

v
2
0

d2PL

dt2
1

d

v
2
0

dPL

dt
1 PL ­

v2
p

v
2
0

e0Ex , (3)

which is solved by second order central differencing.
© 1996 The American Physical Society
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Ignoring dispersion initially we obtain a prediction fo
the carrier shock formation time. For this case and
later analysis it is useful to recast the coupled equat
as a second order integro-differential equation

≠2Ex

≠t2
2 ´`c2 ≠2Ex

≠z2
2 xs3d ≠2E3

x

≠t2
2

≠2PL

≠t2
­ 0 , (4)

where c is the speed of light in vacuum. Closely co
nected with Eq. (4) in the case of zero dispersion (PL ­
0, ´` ­ 1) is the following transport equation:

≠Ex

≠t
2 CsExd

≠Ex

≠z
­ 0 , (5)

with the amplitude-dependent velocityCsExd given by
CsExd ­ cy

p
1 1 3x s3dE2

x . Using this relation and its
first time derivative to eliminate all time derivatives
Eq. (4) (with PL ­ 0) one can show that any solution
Eq. (5) is a solution of the Maxwell Eq. (4). Equation (
has shock solutions [12], and the time for the wave
break is given by

tB ­ 2

√
d

dj
Fsjd

Ç
j­jB

!21

, (6)

whereFsjd ; CfExsj, 0dg andjB denotes the value ofj
for which F 0sjd , 0 andjF0sjdj is a maximum.

Carrier shock breaking times were confirmed by so
ing the system Eqs. (1) and (3) numerically. As an i
tial condition we choose a 30 fs Gaussian pulse (FWH
of amplitudeE0 and carrier frequencyvc ­ 4.0 3 1014

sTopt ­ 15.7 fsd. The Kerr medium used has a dime
sionless strengthx s3dE2

0 ­ 0.022. In Fig. 1 we show the
pulse profile shortly after having entered the Kerr medi

FIG. 1. A 30 fs pulse after propagating 6.8 (dotted) a
20.2 mm (solid) in a dispersionless medium with Kerr no
linearity 0.022. The dotted curve has been translated so a
coincide with the breaking wave form.
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and a second profile (solid) after the pulse has propaga
20 mm. Carrier shock formation is clearly evident, th
strongest shock occurring where the pulse has maxim
amplitude. The spatial Fourier transform shows the pr
ence of multiple harmonics due to exact phase match
for this dispersionless medium.

Figure 2 shows numerically determined breaking tim
for different values of the dimensionless Kerr streng
x s3dE2

0 . The pulse initial conditions were the same
above. The solid line is the curve determined by insert
our initial condition into Eq. (6) which yields

Tc
B ­

1
3p

Topt

x s3dE2
0

s1 1 4.5x s3dE2
0 d3y2p

s1 1 3x s3dE2
0d s1 1 6xs3dE2

0d

!
x s3dE2

0!0

1
3p

Topt

x s3dE2
0

. (7)

In arriving at Eq. (7) we have assumed that the pu
width TFWHM is longer than the optical periodTopt. The
agreement between the numerical values and Eq. (7
quite good for all but the largest values ofx s3dE2

0 . The
deviation for larger values can in part be attributed
the fact that the predicted values assume that the p
is always in the Kerr medium, whereas in the numeri
simulations the pulse enters from vacuum. For larg
Kerr strengths the breaking occurs so rapidly that t
difference is important.

To contrast carrier shock formation with the mo
well known envelope shock [1,2], we solved the env
lope equation, obtained by inserting the standard an

FIG. 2. Numerically determined breaking times as a fun
tion of the nonlinearity. Different symbols denote differe
spatial resolutions and use of either the (2,2) or (2,4) n
merical scheme. The formula in Eq. (7) is represented
the solid and dotted lines, respectively, for the pulse wid
indicated.
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Exsz, td ­ E0sAeiskcz2vctd 1 c.c.d, into Eq. (4) to obtain

≠A
≠z

­ 2 k0
c

≠A
≠t

2
ik00

c

2
≠2A
≠t2 1

k000
c

6
≠3A
≠t3

1 x s3dE2
0

3iv2
c

2kcc2 jAj2A 2 x s3dE2
0

vc

2kcc2

3

µ
2 2 v0

k0
c

kc

∂
≠jAj2A

≠t
, (8)

where k2
cc2 ­ v2

cnsvcd ­ v2
c f1 1 x̂svcdg and primes

denote derivatives with respect tov. The last term
in Eq. (8) gives rise to the envelope shock. One
explicitly derive an envelope breaking time if the GV
term (k00

c ) is small relative to the shock term. Followin
the same analysis which leads to Eq. (7) we obtainTe

B ­
0.156cTFWHMyxs3dE2

0yps2 2 ypyygd, whereyp and yg

are the phase and group velocities at the carrier freque
In physically relevant situationsx s3dE2

0 ø 0.1 and we
obtain the simple ratio for the carrier and envelope bre
ing times Te

ByTc
B ø 1.467TFWHMyTopt where we have

taken yp ­ yg ­ c due to the small dispersion. Sinc
the envelope approximation is only valid when the pu
contains at least two optical cycles, we see that the t

FIG. 3. Comparison of the envelope approximation w
the 1D Maxwell’s equation after propagating27 mm. The
appearance of the strong third harmonic in the Maxw
spectrum indicates the presence of a carrier shock. Note
the Fourier transform for the envelope has been shifted byvc
to facilitate comparison.
2490
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for the envelope to break is always much longer than
breaking time for the carrier.

To avoid long computations and accumulation of n
merical dispersion errors we have used a Kerr strengt
x s3dE2

0 ­ 0.01 (dn ­ 3x s3dE2
0y8n0 ­ 0.0034), but as the

plot in Fig. 2 indicates, the carrier shocking phenome
scales to nonlinear index changes on the order of1024.
Figure 3 shows a direct comparison of the evolution
an 80 fs pulse for the 1D vector Maxwell and the en
lope model [Eq. (8)] in a Lorentz medium with a GV
of 2.5 ps2ykm [13] . The envelope solution appears a
smooth curve superimposed on the oscillatory optical
rier pulse solution to Maxwell’s equations. The acco
panying pulse power spectra show the appearance
strong third harmonic component characteristic of the c
rier shock. Higher harmonics are suppressed by the s
GVD present which prevents the carrier wave from bre
ing as is shown in Fig. 1. In Fig. 4 the pulse has pro
gated525 mm, and we see the development of an envelo
shock accompanied by the strong spectral broadening
modulation. On the trailing edge one can see that the t
harmonic pulse generated by the carrier shock is begin
to separate from the fundamental due to the differenc

FIG. 4. As in Fig. 3 after propagating525 mm. An envelope
shock has developed on the trailing edge of the pulse w
is reflected in the strong spectral broadening in the Fou
spectrum. The third harmonic pulse separates from the fu
mental, and both fundamental and third harmonic spectra
strongly modulated.
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group velocities at the fundamental and third harmon
Since the GVD used is quite small, the estimated distan
for carrier and envelope shocks (117 and377 mm, respec-
tively) are still useful as they indicate the approximate d
tances at which the shocks appear. We remark that
GVD of 52 ps2ykm the same features are evident, but n
the third harmonic pulse generated by the carrier shoc
smaller than the fundamental by a factor of 25 (in Fig.
the difference is a factor of 6).

We have shown that novel nonlinear self-steepen
effects can act in concert to produce two well separa
self-steepening events, one on the optical carrier and
other on the envelope of the carrier (when this is w
defined) as an intense many-femtosecond duration op
pulse propagates in optically transparent media. Car
shocking and dispersive regularization are bound to p
a key role, competing with many other complex physic
processes, during femtosecond pulse critical collapse
bulk transparent media. Unlike the case considered h
the shock time, or equivalently shock distance, will beco
an extremely sensitive function, decreasing rapidly
the critical collapse point is approached. In 1D, t
experimental results of Knoxet al. [3] show a maximum
nonlinear index change of6.4 3 1023 which is within
the range of nonlinearities we have studied (see ar
in Fig. 2). A value ofn2 2 orders of magnitude large
than that of silica has recently been reported [14] a
is a good candidate material for demonstration of car
shocks. With the currently available short pulsed las
one should be able to see the harmonic signature of
carrier shock even for silica. The standard Sellme
formula for silica [2,15] yields a ratio of the phase to gro
velocity near unity nearl ­ 620 nm which is the carrier
wavelength used by Knoxet al. It is therefore possible tha
any higher harmonics that they may have observed
in fact, the carrier shock signature. The fringe-resolv
autocorrelation (FRAC) technique [16] may provide dire
measurements of the carrier shock formation. A m
realistic model for silica would require our replacing th
single resonance Lorentz model with a correspond
three resonance Sellmeier model. This would allow mu
.
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more flexibility in varying the GVD and the phase-gro
velocity mismatch.
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