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Carrier Wave Shocking of Femtosecond Optical Pulses
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Numerical integration of Maxwell’'s equations for propagation of a femtosecond pulse in a medium
with linear Lorentz response and a Kerr nonlinearity shows shock formation on the underlying carrier
wave prior to the envelope shock. The carrier shock is characterized by the appearance of a strong
third harmonic pulse, whereas the envelope shock appears later as spectral broadening and modulation
of the fundamental and higher harmonic spectral features.

PACS numbers: 42.65.Ky

Advances in laser technology in the past decade havand see explosive growth. As the phenomena we are con-
made possible the production of pulses which contain a fewerned with occurs on the scale of the carrier wavelength,
optical cycles [1]. Although such ultrashort pulses contaimo envelope approximations are valid and one must resort
small amounts of optical energy, enormous intensitieso a numerical integration of Maxwell’'s equations. Nu-
exceedingl TW/cn? can arise and the accompanying merical schemes for the integration of Maxwell’s equations
intensity-dependent corrections to the index of refractiorhave been refined in the past few years [7] to allow for an
are such that one can expect novel nonlinear phenomerdficient integration of media with memory in both the lin-
such as shock formation over very short propagatiorear and nonlinear polarizations.
lengths. It has been suggested in [2] that an envelope We restrict our attention to nonmagnetic dielectric me-
shock was observed experimentally [3] and that this can bdia with no free charges, in which case we have for
understood using standard envelope approximations [2,Mlaxwell’'s equations
to Maxwell’s equations. Laser-induced breakdown (LIB) OB,  OE, oD, 1 9B,
cannot be ruled out at such very high peak intensities, - = =

. : at az ’ at mo 9z @)
but there is evidence to show that for such short and . . . .
where all quantities above and in the following are in

hence low energy pulses the cascade-avalanche path | S units. The medium is modeled by a single Lorentz

unlikely and multiphoton processes are more likely to lea ) . . .
. - oscillator plus an instantaneous Kerr nonlinearity
to breakdown [5]. Indeed, very recent experiments in

water using 100 fs pulses indicate that local peak field
intensities can exceedl0!*> W/cn? in the focal region
with incident pulse absorption being less tha% [6].

Moreover, breakdown becomes a sensitive function of + X(3)E3(z,t)’, (2)
optical wavelength. Shock formation on the carrier wave

is expected therefore to compete with other physics duringith the linear susceptibility given by (1) = w[%e—ﬁf/z X
the critical collapse of femtosecond duration optical pulsesin(yw3 — 62/41)/v/wj — 8°/4, [¥(w) = w2/(w] —
in optically transparent media where the local intensity at 5, — )], ‘”127 — (8, — sx)w, &, and s are the

the critical collapse distance can become very large.  static and infinite relative permittivities, respectively, and
The above breakdown scenario is extremely compli-, the resonance frequency of the Lorentz oscillators.
cated, so we confine our attention here to plane wavgaywell's equations are solved by either a second order
propagation for simplicity and show that an optical carrieri, time, second order in space [(2,2)] finite difference time
shock can arise in a medium with an instantaneous Kelfiomain method [8] or a second order in time, fourth order
nonlinearity. Dispersion plays an important role in shock;, space [(2,4)] scheme [9]. The numerical dispersion
regularization (smoothing) and influences the signature ofnerent in these methods has recently received a good

the carrie_rshock. As dispgrsion_is typically strong for suchyeal of attention [10], and we have chosen our spatial
short optical pulses [the dispersion length scales’ds;,  giscretizations accordingly.

wherek” is the leading order contribution to the group ve-  The convolution integraP, = € [ dt' x(t — t))E.(t')
locity dispersion (GVD) and, is the characteristic pulse j, Eq. (2) is most efficiently solved by replacing it with

length], phase mismatch leads to the separation in time of e equivalent second order ordinary differential equation
strong third harmonic optical pulse moving with a different[7 11j

group velocity from the fundamental. For very weak dis- 2 2
: ; ) 1 d*Py 6 dPg w,
persion, a component of the third harmonic pulse moves —3 =5 — —— + Pp = —5 €kE,, 3
with the fundamental and, in the dispersionless case, all wy dt wg dt wo
higher harmonics of the fundamental are phase matcheghich is solved by second order central differencing.

t
D, (z,1) = €0&=E(z,1) + f dt' x(t — t)E,(z,1')
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Ignoring dispersion initially we obtain a prediction for and a second profile (solid) after the pulse has propagated
the carrier shock formation time. For this case and for0 um. Carrier shock formation is clearly evident, the
later analysis it is useful to recast the coupled equationstrongest shock occurring where the pulse has maximum
as a second order integro-differential equation amplitude. The spatial Fourier transform shows the pres-

9E, | 9E, o PES %P, ence_of multipl_e harmonics_, due to exact phase matching

— &xC — —* - —= =0, (4) forthis dispersionless medium.
ar? 922 ar? ar? Figure 2 shows numerically determined breaking times
where ¢ is the speed of light in vacuum. Closely con- for different values of the dimensionless Kerr strength
nected with Eq. (4) in the case of zero dispersien &  xPEs. The pulse initial conditions were the same as
0, e = 1) is the following transport equation: above. The solid line is the curve determined by inserting
our initial condition into Eq. (6) which yields

OE, OE,
ot 9z re— L Tom (1 + 45xy9Ep)
B
with the amplitude-dependent velocig(E,) given by 37 YOE; I+ 3xOE) (1 + 6xOE)
C(E;) = c/y/1 + 3y®E2. Using this relation and its 1 Topt

(7)

first time derivative to eliminate all time derivatives in
Eq. (4) (with P, = 0) one can show that any solution of

Eq. (5) is a solution of the Maxwell Eq. (4). Equation (5) |n arriving at Eqg. (7) we have assumed that the pulse
has shocl_< solutions [12], and the time for the wave tqyigin Tewiu is longer than the optical periafl,,. The
break is given by agreement between the numerical values and Eq. (7) is
d - quite good for all but the largest values pf¥E3. The
w={gerel_ ) -

(6)  deviation for larger values can in part be attributed to
the fact that the predicted values assume that the pulse
whereF(§) = C[E,(£,0)] andép denotes the value & s always in the Kerr medium, whereas in the numerical
for which F/(¢) < 0 and|F'(¢)| is a maximum. simulations the pulse enters from vacuum. For larger
Carrier shock breaking times were confirmed by solv-Kerr strengths the breaking occurs so rapidly that this
ing the system Egs. (1) and (3) numerically. As an ini-difference is important.
tial condition we choose a 30 fs Gaussian pulse (FWHM) To contrast carrier shock formation with the more
of amplitudeE, and carrier frequencw. = 4.0 X 10'*  well known envelope shock [1,2], we solved the enve-
(Topr = 15.7 fs). The Kerr medium used has a dimen- |ope equation, obtained by inserting the standard ansatz
sionless strengtly®EZ = 0.022. In Fig. 1 we show the
pulse profile shortly after having entered the Kerr medium

YOE2Z-0 g X(3)E§.
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k/k, FIG. 2. Numerically determined breaking times as a func-

tion of the nonlinearity. Different symbols denote different
FIG. 1. A 30 fs pulse after propagating 6.8 (dotted) andspatial resolutions and use of either the (2,2) or (2,4) nu-
20.2 um (solid) in a dispersionless medium with Kerr non- merical scheme. The formula in Eg. (7) is represented by
linearity 0.022. The dotted curve has been translated so as the solid and dotted lines, respectively, for the pulse widths
coincide with the breaking wave form. indicated.
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E.(z,1) = Ep(Ae'*i=@) + c.c), into Eq. (4) to obtain  for the envelope to break is always much longer than the
breaking time for the carrier.

A J9A k! 9PA k! A , : _
=~k -5 -5t >3 To avoid long computations and accumulation of nu-
9z ot 2 ot 6 ot merical dispersion errors we have used a Kerr strength of
NP LA 3iw |A|2A YR Xongg =001 (67 =3 X<3>E3/8n0_ = 0.0034), but as the
2k.c 2k plot in Fig. 2 indicates, the carrier shocking phenomena
lA]2A scales to nonlinear index changes on the ordet(of*.
<2 — wy > , (8) Figure 3 shows a direct comparison of the evolution of
ke it an 80 fs pulse for the 1D vector Maxwell and the enve-

where k2c? = w?n(w.) = 0?[1 + j(o.)] and primes lope model [Eq. (8)] in a Lorentz medium with a GVD
denote derivatives with respect @. The last term of 2.5 ps’/km [13] . The envelope solution appears as a
in Eq. (8) gives rise to the envelope shock. One casmooth curve superimposed on the oscillatory optical car-
explicitly derive an envelope breaking time if the GVD rier pulse solution to Maxwell's equations. The accom-
term (') is small relative to the shock term. Following panying pulse power spectra show the appearance of a
the same analysis which leads to Eq. (7) we ob#gin=  strong third harmonic component characteristic of the car-
0. 156cTFWHM/X(3)E§vp(2 v,/v,), Where vp and v, rier shock. Higher harmonics are suppressed by the small
are the phase and group velocities at the carrier frequenc&VD present which prevents the carrier wave from break-
In physically relevant situationg®E3 < 0.1 and we ing as is shown in Fig. 1. In Fig. 4 the pulse has propa-
obtain the simple ratio for the carrier and envelope breakgateds25 wm, and we see the development of an envelope
ing times Ty/Tp =~ 1.467Tewnm/Tope Where we have shock accompanied by the strong spectral broadening and
takenv, = v, = ¢ due to the small dispersion. Since modulation. On the trailing edge one can see that the third
the envelope approximation is only valid when the pulseharmonic pulse generated by the carrier shock is beginning
contains at least two optical cycles, we see that the timé& separate from the fundamental due to the difference in
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FIG. 3. Comparison of the envelope approximation withFIG. 4. As in Fig. 3 after propagatini25 um. An envelope

the 1D Maxwell's equation after propagatiiy um. The  shock has developed on the trailing edge of the pulse which
appearance of the strong third harmonic in the Maxwellis reflected in the strong spectral broadening in the Fourier
spectrum indicates the presence of a carrier shock. Note thapectrum. The third harmonic pulse separates from the funda-
the Fourier transform for the envelope has been shiftedbby mental, and both fundamental and third harmonic spectra are
to facilitate comparison. strongly modulated.
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group velocities at the fundamental and third harmonicmore flexibility in varying the GVD and the phase-group
Since the GVD used is quite small, the estimated distancegelocity mismatch.
for carrier and envelope shocksl{ and377 um, respec- The authors acknowledge support from the Ari-
tively) are still useful as they indicate the approximate diszona Center for Mathematical Sciences under Contracts
tances at which the shocks appear. We remark that at’do. AFOSR F49620-94-1-0051 and No. AFOSR F49620-
GVD of 52 ps’/km the same features are evident, but now94-1-0463.
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