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A dispersion relation for electron differential cross sections in the momentum transfer sdifaraid
fixed energyleads to a complex angular momentum Regge pole representation. This description, which
embeds the more reliable large scattering angular measurements, allows an accurate extrapolation of the
generalized oscillator strength downkd = 0, giving the optical oscillator strength. The X&,, and
P/, data at 100 and 500 eV are used to illustrate the method. An experimental protocol is described
for this procedure which results in a reduction of experimental noise and fluctuations.

PACS numbers: 34.80.Dp, 32.70.Cs

Lassettre, Skerbele, and Dillon [1] have deduced thathrough the examination of the law of growth of the
the generalized oscillator strength (GOS) converges to theoefficientsf, which shows that Eq. (1) is inappropriate
optical oscillator strength (OOS) &> — 0 (this is re- for large values ofK?. For example, the data [5] at
ferred to as the Lassettre limit theorem). Additionally, 100 eV in theJ = 3/2 state leads tgy = 0.222, f| =
they inferred that their result should be valid also for in-—1.204, f, = —3.980, and f3 = 30.49. Clearly, each
elastic electron transitions, regardless of the applicabilithew term in Eq. (1) is anuch larger correctiorthan the
of the Born approximation, namely, at any impact energyprevious one. Even at small valuesit, this feature is
E. The limiting behavior of the GOS a&> — 0 is im-  a source of ill-conditioning from the start.
portant in the normalization of the experimentally deter- This Letter presents a new method which is unbiased,
mined relative differential cross sections (DCS) for exci-model independent, based on first principles, and correctly
tation of atoms by electron impact [2,3], calculation of embeds the large scattering angle measurements where
cross sections for energy transfer [4], and in the deterthe errors are relatively small. It extrapolates reliably
mination of the OOS’s [5,6]. The limiting behavior of the GOS through the nonphysical regionk3 = 0 in-
the GOS ak? — 0, has been examined [5,7,8] with no dependently of the fact that it will also represent the full
clear departure from the limit theorem. Therefore, onescattering data including theump. Previously, Gerjuoy
of the major theoretical difficulties is that, for finit€, and Krall [10], followed by Rubin, Sugar, and Tiktopou-
the valuek? = 0 is nonphysical, and it is necessary to los [11] and Tip [12], analyzed atomic scattering problems
use an interpolation-extrapolation algorithm on the experiusing theenergydispersion relation at fixed real scatter-
mental data to reach it. Also, accurate measurements @fig angles. While additional poles and branch cuts are
the DCS at small scattering angles are difficult to obtainintroduced due to the composite nature of the target and
and the experimental errors increase dramatically as thelectron exchange, when one deals wathergy disper-
angle approaches zero, particularly for optically allowedsion relations, no such singularities and associated diffi-

transitions. culties are encountered imomentum transfer dispersion
For the GOS, many authors use [9] relations[13].
1 " At fixed physical energypne can write the GOS
2y _
F(K") = (1 + x2)6 an< 1 + x2> } (@ function as
where fo is the OOS andc = K/Y with ¥ = 21 + ) ® p(&)dé
\J2(I — W), I andW being the ionization and excitation F(x®) = f 1+ £x2° (2)

energies, respectively. The exponesst ‘is associated

with the s — p transitions that we specifically study in wherex is the momentum transfer measuredYirunits.
this Letter. F(K?) is analytic in the cut complexX?  Equation (2) defines a function of analytic in all the
plane from minus infinity to zero. A formula like Eq. (1) complexx? plane from—c« to 0. In particular, Eq. (2)
representsF(K?) by a rational fraction with a pole of defines aunique and nonambiguowsalytic continuation
order m + 6 located atk? = —Y2. The discontinuity of F(x?) from the physical positive range of values
of the cut has been replaced by a pole of high degreef x> down to zero. An equivalent but more suitable
m + 6. This kind of fitting procedure for the GOS suffers representation of Eq. (2) is

the deficiency of involving only data coming from small

scattering angles where measurements have generally F(x?) = Z N o B 3)
large systematic errors. This is even more transparent 1+ f x2)"
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Practically, only a finite number of terms in Eq. (3) is with Eq. (1), we set¢ = 1 in Eq. (9) so that our final
considered. If only one term is kept in Eq. (3), one gets representation is a four parameter one involvéagr, r,

and ¢
RO = e @ 1
F(x*) = ——={R + 2rcodeIn(l + x?) — ¢}
which, whenn = 6 and ¢ = 1, is equivalent to the GOS ) 1+ xz)ﬁ{ r cogeIn( ¥) ol
expression for the hydrogen atom in the high energy limit. (10)

However, when three terms are kept in Eq. (3), a riche

structure emerges To visualize the content of Eqg. (10), weap Eq. (10)

| through
F(x?) = a7 25 y=In(1 +x2) and FM(y)= (1 + x?)°F(x?),
[ dl 2 } 5 hich reduces Eq. (10 -
X | R + + : which reduces Eq. to
ey e © roes £q. (10) |
If ny, na, r1, andr,, are selected to be real, only a cor- F"(y) = ap + a)cosey + by siney, (12)

rection to Eq. (4) is introduced. But, if we choose them towhereay = R, a; = 2r cosp, andb, = 2r sing. Equa-
becompleand complex conjugate for Eq. (5) to be real], tion (12) represents an expansion of the GOSaurier
then an entirely new and interesting representation of thgeriesof which we have retained only the first terms, with
GOS emerges which describes it agliffraction peak the OOS being given by
This description is well known and has been proposed b
De Alfaro arr)1d Regge [14]. The, are the compr?expangu— g 00S=a + a;. (13)
lar momentum Regge poles. This is best understood b¢learly, the new representation emphasizes the region
expanding Eq. (3) for larg&? and identifying the result of the humprather than the usual [5] smak? region.
with formula (9.21) of p. 102 of Ref. [14]: This can be understood theoretically because an analytic
o B function such as defined by Eq. (2) is one block, meaning
F(K?*) ~ > peé (K™, K?large.  (6) that its value in any interval defines it everywhere and,
¢ in particular, the hump defines it completely. From

Notice that in formula (9.21) of Ref. [14 is the square an experimental point of view, the situation is even
root of the impact energy amibtthe momentum transfer, clearer. Large angle scattering measurements are far more
while 7 is the square of the momentum transfer, andaccurate than the small angle ones. Therefore, a greater
the a’s should be identified with the,’s. Then; are  weight should be given to the former data when producing
therefore the complex angular momentum Regge poleshe final OOS through analytic continuation provided by
their real part controls the dropoff in the GOS, while theEq_ (10). In the scaled representation, Eq. (11), we use a
imaginary part is responsible for the oscillatory behaviorweighted square best fit method to obtain the parameters

in the GOS (*hump”). €, R, r, and¢, through the functional
Writing the quantities, yet to be determined, as N M M 2
. . _ Fy — F (.))n)
&=6E=¢, ny = e, ny = —ie, T—Z T AFM | (14)
_ i d . —i¢ 7 n=1 n
. re=re”, and n=re (7) where N is the number of experimental data points,
we obtain v, FM, and AFM are the mappeexperimentalvalues
Flx2) — 1 through the mapping Eq. (10) of theh point position,
() = (1 + x2)6 GOS value, and GOS statistical error, respectively. When
i id minimizing F with respect toag, a;, b;, and €, we
x| R + — _ |, (8) Obtain a set of threnear equations to determine the firs
re re btai t of threkn tions to determine the first
(I + éx2)ie (1 + éx2)7ie three parameters as a function of the last @xeQnly the
which can be rewritten as last equation which fixeg self-consistently is nonlinear.
) 1 ) This is another very pleasant feature of the method.
F(x7) = m{R + 2rcodeln(l + £x7) — o]} We illustrate the reliability of this method by apply-

ing it to the XeP,,, and P3/, data at 100 and00 eV,
(9)  respectively, where the small angle measurements [5] are
To ensure thatF(x?) is always positive, we impose still sufficiently accurate [16]. Both our results using only
the restriction thatR = 2r. The limiting caseR = 2r  large angle scattering daté (> 8. = 4° where errors be-
corresponds to the vanishing of the GOS in the physicatome small) on the one hand, and all the data, on the other
region which occurs only af = o [15]. hand, are compared with the results obtained using the
Clearly Eqg. (9) represents a diffraction peak, so thastandard small angle extrapolation formula, Eq. (1). Fig-
the hump is automatically embedded in it. Consistent ure 1 (top part) represents the GOS in the new variables
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0.6 — r TS s TABLE I. Comparison of the OOS for xenon.
Mapped — Impact 2Pij 2Py
energy (eV) 100 500 100 500
0.45 | Xe %Py E=100 eV. ay 0.3638 0.4321 0.1828 0.2943
a, —0.1940 —0.2556 0.0320 —0.0785
by 0.2645 0.3207 0.1464 0.2622
€ 3.6 3.13 7.10 4.50
< I 00Ss 0.1698 0.1765 0.2148 0.2158
= 037 7 00S (4°) 0.1713 0.2114  0.2095 0.2096
Reliability 1.3% 18% 2.5% 3.0%
0.15 . smoothness in the representation, therefore making the
a data inappropriate for analytic continuation. The Xg»
OOS at100 and500 eV are compatible with the Lassettre
L limit theorem within 0.5% while for the XeP;,, the
0= L. L. L discrepancy ist%. Table Il compares the values of the
0.00 0.20 0.40 0.60 0.80
Y
0.2 T T T —
Egsz,::tltre - -] 0-6 L I ' ' aUZUki o |
This work —7 apped —
2,
0.15 | Xe iz , E=100 eV. . 0.45 Ye Py, , E=500 6.
) i —_ !
8 0T ] < 03
[ L
0.05 - 0.15
0.00 0.50 1*90 1.50 2.00 3.00
FIG. 1. GOS's for Xe&P,, at 100 eV. Top part: experimen- 0.25 T L | A A
tal data [5],» and our fit, — using mapping Eq. (10). Bottom Lassettre — -1
part: compares the present —, the experimental datas[8hd This work —
our fitting of the experimental data [5], — —, using a seven Xe 2Py, , E=500 eV. 1
parameter Lassettre expansion to avoid any further unphysice
values for the GOS. 0.187 ]
given by Eq. (11) for the X, at100 eV. Clearly, the
large scattering angle data lead to a reasonably smoot® 0.125 I ]
curve but the small angle data form a cluster, and, there©® ™ I
fore are unsuitable for analytic continuation.
In Table | we compare our OOS values obtained using
all the data points of Suzuket al.[5] for Xe Pj/, 0.062 | ]
and XePs3,, at 100 and 500 eV. Also included are s
values of OOS’s computed with the same data down tc
only 6. = 4°. The results are in excellent agreement,
within 3%, except for the XeP,/, state at500 eV where o Y PR PR
0.00 0.75 1.00

the reliability [the relative variation between OOS and
00S@°)] is 18%. This discrepancy is easily understood.

From Fig. 2 (top part) we see a strong departure fronFIG. 2. Same as Fig. 1 but for the case of >/, at500 eV.
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TABLE Il. Comparison of the present OOS for xenon with other results.
00s Ratio
Author 2Pip 2Py 2P35/*Pip
This work 0.173 £ 0.033 0.215 = 0.001 1.24
D. Bessiset al.2 (1) 0.141 = 0.019 0.208 = 0.027 1.10
(2) 0.164 = 0.019 0.223 + 0.027 1.36
T.Y. Suzukiet al.° 0.158 = 0.019 0.222 *= 0.027 1.41
Ester and Kesseler 0.23 £ 0.05

*Reference [13].
Reference [5].
‘Reference [6].

OOS using all the data points of Suzuki al.[5] using a formula like Eq. (9), together with a choice of
for the XePs3,, and XeP;,, at 100 and 500 eV with  scattering angles defined by our protocol.
other results. A more complete comparison is found in This work was supported by the National Science
Ref. [13]. Foundation, DOE, Office of Basic Energy Sciences,

Finally, an experimental procedure to optimize the useDivision of Chemical Sciences, and AFOSR. We thank
of this approach is suggested. (i) The experimental datBr. Z. Chen for valuable discussions.
are remapped in the variables, given by Eq. (11), adjusting
the exponent to b& + M + 5 as proposed by Klump
and Lassettre [9]. (i) When Fourier analyzidg(y),
optimization requires that the number of experimental 1]
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