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Molecular Origin of Friction in Liquids
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Relaxation in liquids can often be formally attributed to “friction,” a generally time-dependent
guantity that can be quantitatively specified, but is difficult to break into molecular components. We
show here how the instantaneous normal modes of a fluid can be used to derive this friction, thereby
identifying its molecular origins. This approach is illustrated by dissecting the vibrational relaxation of
a dissolved diatomic molecule into contributions from specific kinds of solvent dynamics.

PACS numbers: 62.40.+i, 63.50.+x, 78.47.+p, 82.20.Rp

Despite the inherent many-body character of moleculapossible to arrive at the exact projection by inverting
liquids, frequently only a few degrees of freedom aremolecular dynamics results [4—7], although it is much
truly of interest. Obvious examples include vibrationalmore common (and frequently quite accurate) to replace
relaxation [1(a)], where one probes energy flow intoF(z) with the force computed while holdingfixed [7,8].
and out of a single bond, and reaction kinetics [1(b)],These two simulation approaches have been employed
where investigating chemical reactions means monitoringuccessfully for some years now in both liquid- and solid-
nothing more than a low-dimensional slice in the?0 state contexts. Still, it should be pointed out that neither
dimensional coordinate space. The remaining degregwocedure lends itself to any microscopic interpretation of
of freedom then act as a bath in which the speciathe ingredients that make up the friction—so one does not
coordinates evolve. know from what kinds of bath dynamics the friction really

The usual strategy for understanding such problems iarises.
to write an effective equation of motion for the tagged An intriguing finding by Zwanzig [9] was that one
degree of freedomg, such as could represent at least the mathematics of Eq. (1) by

imagininga microscopic Hamiltonian in which the solute

t
mi(t) = (F) — fo drn(t — 1)x(7) + F@). (1)  coordinate was linearly coupled to a bath of harmonic

In such a generalized Langevin equation (GLE) [2],0scillatorsx,

(F) is the force from the potential of mean force (the 1 1

averaged force om, averaging over all the bath degrees H (x,{xa}) = Holx) + Z(E pa + B wfﬂi)

of freedom), F(¢) describes the “random” force—the «

instantaneous fluctuations in the force that would be + anxax, 3)
imposed by the solvent where there are xhdynamics, a

and 7n(z) is the bath-induced friction felt byk. This
time-delayed friction term occurs because of an indirec
process: ax moves, the solvent responds, which in turn
leads to a new force oxopposing the motion, typically a . - ; :
force somewhat retarded in time. What we wish to notetvfg]] a friction determined by the spectrum of couplings
in this Letter is that if the tagged coordinate is that of
a solute dissolved in a liquid, the short-time components _ 2 B

of the friction arise from the microscopically well-defined @) = (7/2) g[ca/‘”“]a(“’ ©a). ()
instantaneous normal modes [3] of the liquid.

One can always formally derive an exact GLE by
projecting out the desired degrees of freedom from al
the remaining degrees of freedom [2]. This derivation
reveals that the friction kernej(z) is proportional to the
autocorrelation function of the random forc¢g, which

with 7, the tagged coordinate’s gas-phase (isolated-
Fnolecule) Hamiltonian. For such a Hamiltonian, the exact
equations of motion can be written in the form of Eq. (1)

Although the equivalence may be regarded as nothing
rnore than a formal device, the identity has achieved a
celebrity of its own in that it has become commonplace to
apply GLE’s by approximating or guessing a form for this
spectrum of couplings [11]. The standard Ohmic form,
itself is an appropriately projected version of the a(:tua{or exgmp_le! has/(«) proportional tow, and no time
force felt byx delay in frlct_lon [10]._ Morgover, though there _has never
' . been any microscopic assignment of thegeoscillators,
n(t) = BFOF@®), B=(ksT)". (2) Eq. (3)has always hinted that it might be possible to find
Obviously, if Eq. (1) is to be regarded as a literal, rathethem. That we have done so is the essential point of this
than just a phenomenological equation of motion, ongaper.
has to find a way to compute this friction kernel starting Our starting point here is the observation, made rather
from the microscopic system Hamiltonian. It is actually forcefully by recent ultrafast spectroscopy experiments
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[12], that in spite of the immense range of time scales V. (x,R) = V.(x,Rg) + anqa(t) (x — xp) + ---,
relevant to liquid dynamics (vibrational relaxation, for a
instance, can occur anywhere from picoseconds to terthen simple linear algebra gives us molecularly explicit
of seconds [1(a)], one often needs to have a handle oexpressions for the liquid modes [x,(r) = qa(r) —
solvent dynamics only for relatively short times in order to . /w2, with f, the instantaneous force along theh
understand liquid-state processes. This simplification cadirection], as well as spelling out the coupling coefficients
arise either because the phenomenon itself is extremefpr each mode,
rapid—as with solvation dynamics in simple solvents B 92V

. . . t 1/2 c
[13]—or because the crucial triggering events are short Co = ZUa,j,me <W> . (6)
lived even if the interval between them is lengthy. ju YO ju 7 xoRo
Thermally activated reaction dynamics certainly falls intoThe crucial realization is that the dynamics of the
this latter category [14], with the short-timed solvent-tagged coordinate is well described when the Zwanzig-
influenced dynamics of a barrier crossing the cruciaHamiltonian-derived friction is specified with just these
factor; we illustrate below that vibrational relaxation caninstantaneous ingredients and then averaged over liquid

also be thought of in this manner as well. configurations [16],

For subpicosecond times, then, one knows that the o2
time evolution of liquids is frequently well described n(t) = <Z—§[0030al - 1]>
in terms of theinstantaneous normal mod¢NM's) of a “a

the liquid [3,15], the eigenvectors of the instantaneous _ [ 2
dynar?wical [matrng —thge matrix of second derivatives B f do pisic(w) [cosot = 1]/ 07, Q)

of the potential energy evaluated at instantaneous |iquithereby assigning the spectrum of couplings of Eq. (4)
configurations. ~ Specifically, ifVp,n is the potential as J(w) = (7/2)0 ' paic(w) [10], with the “friction
energy of anN-atom liquid with coordinateR = {r;,}  spectrum”pgic(w) = 3, c26(w — wy)), nothing more
and associated mass (or moment-of-intertia) factofs,  than a weighted INM density of states.

then at any instantaneous liquid configuratRn A number of comments are in order at this point.
2 These results are actually deceptive in their apparent
1 8 Vbath . . . . . .
Djpkv = , simplicity. It is true that our basic approach relies on
M julicy \OTjp 0Ty /R, nothing more than how dynamical quantities evolve at

(j,k=1,2,..) (m,v =x,9,2,0,0,...). (5) short times; in particular, since we average over the
S ] ) ] ] fully anharmonic distribution of instantaneous starting

If 21) is diagonalized by the matrik/, with eigenvalues points, we arenot simply assuming harmonic behavior.
w, =[U"-D - Ulaa, then it is easy to show, at least There are a number of nontrivial consequences of this
for short enough times, that the displacement of any batynrach, however. For one thing, the instantaneous
coordinate in time is given by aTIInear combination of ¢onfiguration-to-configuration fluctuations of our friction
independent modeg, (r) = > ;, Uq ju[rju(t) — rju(0)],  will be significant, as with any local density of states. |t
each of which is a simple harmonic oscillator with thus needs to be verified that averaged solute dynamics
frequencyw, [15]. To make the connection to the single- can be written in terms of just the averaged friction.
degree-of-freedom-in-a-bath problem, suppose we simpl¥ioreover, the friction as defined by Eq. (7) is, in fact,
take Vian(R) = V(x = xo, R) — Vo(xo), whereV is the  the instantaneoushangein the friction [what would
total potential energy of the systerly governs thex  correspond ton(r) — 5(0) in other treatments]. As a
coordinate without the bath, ang is an instantaneous result, our »(r = 0) = 0 and the second fluctuation-
value. The total potential energy may then be writtendissipation theorem, Eq. (2), holds only in the rather

asV(x,R) = Vo(x) + Vpan(R) + V.(x,R), where thex  unusual second-derivative form
coordinate-bath coupling potenti&l. is defined by the

difference. (One virtue of this particular decomposition i(t) = =B(FOF ).
is that it places the large energy scales associated witWe might also note that because of the non-Debye-
the solvation shell structure into the bath rather tharike character of the INM density of states, the power
relegating them to the coupling.) spectrum of our friction actually diverges as— 0, a
With these prescriptions, an INM analysis allows usresult not inconsistent with the inappropriateness of INM
to write the Hamiltonian in precisely the form given developments at long times [17].
by Eg. (3), with the modesae specifically identified Despite this litany of potential pitfalls, these results turn
as the INM's appropriate to an instantaneous liquid out to be of considerable utility in understanding liquid-
configuration. If, within the spirit of INMs, the evolution state relaxation. An obvious benefit of this formulation is
of Vuyan and the couplingV,. are expanded through that it enables us to derive and interpret the friction start-
second order in displacements about the instantaneoirsg from the intermolecular potentials, without us hav-
configuration, implying that ing to evaluate the full many-body dynamics first. As a
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FIG. 1. The real part of the frequency-domain friction (main é 51+ ]
panel) along with the time-domain friction (inset) seen by a ~ I o R ]
nonrotating diatomic dissolved in a supercritical atomic liquid. = 0 e B -
The solid curves are the INM prediction, whereas the dashed NG 3 1
curves are the Bernet al.results from the full dynamics = -5 PR I AU N B
for a flexible diatomic with an isolated frequency af, = -75 0 75 150 225 300

150 cm™! [7]. Numerical results are presented in this figure
and subsequently assume an Ar solvent [20].

®/21c (cm_l)

FIG. 2. Parallel (perpendicular) [upper panel, (a)] and longi-

. inal (transverse) [lower panel, (b)] projections of the INM
concrete example, consider, as several authors have doﬁ'ﬁtion spectrum. Following the usual convention, the imagi-

recently, the vibrational population relaxation of a sol-pary modes are plotted on the negative frequency axis.
vated diatomic molecule [6,7,17—19]. The comparison

of the friction derived from the complete dynamics [7]
with that computed from the INM’s, Fig. 1, makes it ev-
ident that the essence of the friction is indeed capture
by the liquid's INM’s [20]. Somewhat more quantita-
tively, a comparison of Landau-Teller [18] predictions for

se Egs. (6) and (7) to discover which portions of the
riction arise from which kinds of molecular motion.
If we resolve pgic(w) into components [21] derived
from solvent motion parallel and perpendicular to the

. . . 71
the vibrational energy relaxation raté - between INM o' ond in our example, Fig. 2(a), we find that the
and molecular dynamics [6] calculations of the friction . . L AR i
two kinds of dynamics are statistically indistinguishable:

(.Tab'? ) |nd|cate_s th?t t.h.'s analysis allows us to gain In'They contribute 34.2% and 65.8% of the friction (a
sight into dynamics significantly slower than the few hun-1_2 ratio), respectivel However. when we look at
dred fs one normally thinks of as defining the limits of _ " . | - dp I 3& ' ith h
validity of INM's [3]. motion longitudinal and transverse with respect to the

. . . - line connecting the center of mass of the diatomic with
This ability to specify the friction molecularly has a h sol . b di hat the fricti
number of interesting implications. We can, for example each solvent atom, Fig. 2(b), we Iscover that the friction

' ' is clearly dominated (85.5%) by longitudinal solvent

motion. More generally, the fact that we can phrase
vibrational relaxation phenomena in terms of the INM'’s
Teller prediction for this relaxation rate /T, — ' ng(w), of the solvent suggests that the recent conjecture by
with  the reduced mass of the solute the real part of the Mooreet al.[19] that liquid INM's should resemble solid-
(frequency-domain) friction, an@ the renormalized solute fre- state phonons in their role as discrete energy absorbing
quency. The model used here simulates a diatomic dissolvegdxcitations is actually correct. Despite their remarkably
in Ar; further details are given in Ref. [20]. short individual lifetimes, the ability of a set of INM’s

TABLE I. Vibrational energy relaxation rates. The Landau-

wo/2mc w/[2mc 1/T, — INM 1/T, — MD to generate a friction means that the resulting GLE
(em™") (em™) (ps™h)® (ps™)° will produce phenomenology mimicking that of genuine,
49.5 39.7 12.69 11.26 stable, oscillatory degrees of freedom. What we now may
74.3 68.7 12.50 9.64 have is the possibility of understanding the real liquid
148.6 145.0 3.26 3.16 motions behind this facade.
222.8 221.6 0.05 0.99

gnstantaneous-normal-mode prediction (this work).

We thank Susan Tucker and Mark Tuckerman for
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bPrediction based on numerically exact friction derived from
full molecular dynamics [7].
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amenable to some kind of normal-mode analysis is not
entirely new. Beside the pioneering work of Schvaneveldt
and Loring [17], P. Moore, A. Tokmakoff, T. Keyes,
and M.D. Fayer, J. Chem. Phy%03 3325 (1995), have
speculated that the INM density of states should act as a
solid-state phonon band. In addition, in work published
after this paper was submitted, J. Cao and G.A. Voth,
J. Chem. Phys103 4211 (1995), have recently shown
that their semiempirical optimized normal modes can be
used to compute bond friction to high accuracy.

Following Ref. [7], all calculations reported here used
nonrotating diatomic solutes (with isolated-molecule fre-
guenciesw, and equilibrium bond length.,) dissolved

in atomic liquids composed of atoms identical to those
in the solute—all governed by Lennard-Jones intermolec-
ular interactions (with standard parametersand o) at

the same pointpo? = 1.05,kzT/e = 2.5). The INM
friction spectrum itself,pg.(w), results from 16 108-
particle molecular dynamics (MD) snapshots, each sep-
arated by0.057; [ty = (mo?/e)'/? ~ 2 ps for liquid
argon: massn = 40 amu,e = 120 K, and o = 3.41 A],

with the solute held rigid at., = 1.250 and spatially
fixed. Note that only configurational information, not dy-
namics, is used in these INM calculations.

The projection operatoP* = UTAATU and its comple-
mentP1A = Ut(1 — AAN)U, with 1 the unit matrix, are
the operators required to project out the contribution along
(and orthogonal to) the unit vectdr. For a more detailed
description of the INM projection, see Ref. [15].



