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Subthreshold Pion Dynamics as a Source for Hard Photons beyond Proton-Neutron
Bremsstrahlung in Heavy-lon Collisions
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We report on the first measurement in heavy-ion collisions of hard photons of extremely high
energies that extend the photon spectrum to 5 times the beam energy per nucleon. The photon
spectrum was measured for the systefii& + "4'Ni at 604 MeV and '8'Ta + 7Au at 404 MeV.

The data are interpreted using the Dubna cascade model. The radiative channel of pion-nucleon
interactionm + N — N + v, involving subthreshold pions produced in the nuclear medium, dominates

all other processes considered for the production of the very energetic photons. This channel was never
considered so far at beam energies below the pion threshold.

PACS numbers: 25.70.—z, 13.75.Cs, 13.75.Gx

Extensive studies of hard photon&,(> 30 MeV) respectively. We define this maximum energy as the kine-
emitted in heavy-ion collisions at intermediate bombard-matical limit.
ing energies have demonstrated that they are a unique To overcome this kinematical limit in an individual
and sensitive probe of the reaction dynamics [1]. Thesen collision, the nucleons must acquire more intrinsic
photons have been found to mainly originate from themomentum than available at saturation density. Several
incoherent sum of the bremsstrahlung processes in firshechanisms supplying the extra energy may be con-
chance proton-neutrorpi) scattering. In a fre@n col-  sidered: nucleon off-shell effects, three-body collisions
lision the bremsstrahlung process generates a continuowhich become important at high densities, dynamical fluc-
photon spectrum up to a maximum energy given by tuations which can accumulate energy in one singie

— s — 4my _ Ty my T collision [2,3], or multistep processes involving pions and

Y

NG - 5 (1)  deltas acting as a storage of energy.

\V2TLmy + 4my In this Letter we report on the first measurement of the
. photon energy spectra in heavy-ion collisions in which
where /s is the pn center-of-mass energy anty the kinematical limit has been significantly exceeded.

the nuc}eon mass. Up t(i 3p_prtOX|matheI)t/ halflthﬁ beaml’he highest energy data points of the experimental spec-
energy ', may be converted into a photon. In NeAVY~y., ara gt the limit of the sensitivity of our measurement
ion collisions, thepn center-of-mass energy results from which in the present case was of the order of nb. Pre-

both thet b%am TomentFum per m:plqm;smd tlhe mtnna;:h liminary experimental results have been presented in [4].
momenta due 1o the Fermi motion of nucieons. €At present a unique description, which takes into ac-

the two intrinsic momenta are antiparallel and equal tg

the E . ¢ th h 1 count all the possible mechanisms mentioned, does not
€ rermi momenturp, the energy reaches a maximum qyist - None of the processes alone mentioned in the pre-
value equal to

vious paragraph can account for all the measured very

[Er(my + E) + prpi] ) energetic photons. However, with the photon-production
my(my + Er) ’ processm + N — N + v, calculations performed with

the Dubna cascade model (DCM) [5] can account for
whereEr = y/m} + p#andE, = +/m% + pi. Assum- most of the photons produced above the kinematical limit
ing an intrinsic momentum distribution with a sharp cut-once the pion dynamics is described correctly. This ele-
off at pr = 270 MeV/c, the maximum photon energy mentary process was never considered so far in the beam
in a heavy-ion collisionE}** (smax) is equal to 167 and energy domain far below the threshold for pion produc-
194 MeV at bombarding energies of 4@&nd 60A MeV,  tion in free nucleon-nucleorNWN) collisions.

Smax = 2
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Photon energy spectra were measured for the systems
86Kr + "Ni at 604 MeV and '¥'Ta + ’Au at 44
MeV. The beams were provided by the cyclotron facil-
ity at GANIL, Caen. Photons were detected and identi-
fied by the photon multidetector TAPS [6]. 1320 BaF,
scintillation detectors, each one associated with a plastic .
scintillator acting as charged-particle veto (CPV), were
arranged in 5 square blocks of 64 modules each. Com- 0
pleting the setup, the KVI hodoscope [7] for light charged 10 F
particles (LCP) was located at forward angles inside the w0 b
reaction chamber. The LCP multiplicity recorded in co-
incidence with photons detected by TAPS entered into the
trigger definition, requiring that at least three detectors of
the hodoscope have fired. It was checked [8] that this
trigger condition reduces by at most 20% the total hard-
photon production cross section and cuts out the most pe- I L i
ripheral collisions. In the DCM calculation the selection o S0 100 180 200 280 800 O S0 100 180 200 280
of events with pion production will have the same effect E, (MeV)
as it corresponds to collisions with impact parameters less
than about 6 fm. Energy and direction of incident photond™!G. 1.  Measured photon spectrum (full symbols) in  the
were calculated by the reconstruction of the electromagjeaction “Kr + **Ni at 604 MeV (left panel) and *'Ta +

. . 2P7Au at 404 MeV (right panel) after subtraction of the
netic shower generated in the TAPS blocks. More detailgosmic-ray contribution. The level of cosmic-ray background
on the experimental setup and the data analysis are give#l shown with open symbols. The solid line represents the
elsewhere [9]. DCM calculations. In the lower part the calculated spectrum

During the experiment hard photons were selectedﬁe(rfgﬁgfosg%éq;% _;ﬁgtiois COffeSgondfg to thf jf\?HOWing
by requiring that at least one neutral hit (no energy® e} WX_) vy alnd Ap—> 1\77/. B hrons dicate the
recorded in the CPV and a deposited energy of at leaginematical limits.

15 MeV in the Bak scintillator) was registered. The

most energetic photons were selected by the detection of

at least two neutral hits in adjacent detector modules. In

this way the detection of energetic photons, for whichthe beam energy per nucleon, i.e, 300 MeV and 200 MeV
the electromagnetic shower spreads over more than orfer the Kr + Ni and Ta + Au systems, respectively.
TAPS module, was favored. The two-photon decays ofn Fig. 2 we show the total energyo + T,0) spectrum
neutral pions were selected by requiring two neutral hitof neutral pions calculated in tidN center-of-mass frame.
in two distinct blocks. We thus have exploited the decayThey were identified in the invariant-mass spectrum be-
kinematics in which the laboratory opening angle of thetween 80 and 160 MeV. These limits were deduced from
two photons is equal t620° on average. the GEANT simulation [9]. The mass resolution of the’

The efficiency of the detection system and of the off-peak was 11% FWHM.
line photon identification was calculated for each trigger To trace the origin of the measured photons we
condition using Monte Carlo generated events obtainetiave applied the Dubna cascade model, which was
with GEANT [10]. Because of the extremely low cross sec-originally written for the description of particle and light
tions cosmic-ray induced events, recorded in random cdragment production in bothv + A and A + A high
incidence with nuclear reactions and misidentified by theenergy reactions [5]. The model was extended to describe
analysis as photons, have constituted an unavoidable backlso the photon production. Pion and photon yields in
ground. To control their intensity and energy distribution,DCM were evaluated in a perturbative approach. This
we had implemented an additional trigger allowing oneapproximation is justified by the very small particle
to record events during the beam-off periods. In the off-production probabilities which do not influence the global
line analysis we have applied a cosmic-ray rejection algodynamics of the heavy-ion collision. DCM is based on the
rithm based on the shower profile [11] on the in- and off-Boltzmann-Uehling-Uhlenbeck (BUU) kinetic equations,
beam events. The resulting normalized in- and off-beantut the mean-field evolution is treated in a simplified way.
spectra were then subtracted, leading to background-fre&e have kept the scalar nuclear potential of the initial
photon spectra for the Kr+ Ni and the Ta + Au sys- state, changing only the potential depth according to the
tems (Fig. 1). The photon energjy, was calculated in the number of knocked-out nucleons. This procedure allows
frame of half beam rapidity, which is the center-of-massone to take into account nuclear binding and the Pauli
system for the averagdN collision. The spectra extend principle [12]. This frozen mean-field approximation
well above the kinematical limit, and reach up to 5 timesis good enough for the description of yields of hard
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o T formation,N + N — A + N andA — N + #. For the
" Kr+Ni6OA MeV 1 in-medium inelastidNN cross section, we have used the
., — DCM empirical fits of the free cross section [17] modified by
. Pauli blocking. Formation oA isobars was calculated so
ha J that the effective mass of the N system follows theA
. # mass distribution, its width being dependent on the pion
0 H T 3 momentum in ther N system. We have checked that the
Wl L T ﬁ calculated pion spectra and theproduction via the two-
P — bty body channel closely reproduce the experimental data for
140 160 180 200 220 240 260 280 .. .
E. (MeV) free NN_coII|S|ons [12]. One sh(_)uld emphe_13|ze that all of
' these pions are “subthreshold” in the considefgdange.
FIG. 2. Energy distribution ofr” in theKr + "*'Ni reaction The yield of primordial pions is subsequently modified
at60A MeV, compared with the DCM calculations (solid line). py poth absorption and rescattering processes in the
The arrow indicates the kinematical limit. nuclear matter. Pions can be absorbed either in the
two-step process + N — AandA + N — N + N, or
directly in the processes + (NN). — N + N andw +
photons with energies above the kinematical limit, asv — N + y. The modified treatment of the inverse
these photons are produced only in the early stage afhannel for short-lived resonances [18] was used to
the collision. The Fermi motion in DCM was calculated estimate the cross section of th® + N = N + N
in the local density approximation. The maximal valueprocess. The probability of the pion absorption on a
of the Fermi momentum ipr(r) = i[372p(r)/2]'/3,  correlated(NN). pair was calculated from the inverse
where the nuclear density(r) was approximated by a cross section for the reactiom + p — d + =*. This
Woods-Saxon distribution with parameters extracted frontross section could be enhanced by a fa®oin the
electron-nucleus elastic scattering data [13]. nuclear medium [19]. On the other hand, the probability
First we have considered the@n bremsstrahlung of finding a deuteronlike pair has a relative weight of
process p + n— p +n + vy. The relevant pro- aboutl/4[20]. Since the precise value of these factors is
duction cross section in the one-boson approxisomewhat uncertain and since they have the tendency to
mation was taken from the parametrization of Schéafecancel each other, we have used the free cross section for
et al.[14]. In this approximation the photon emission the pion absorption [21].
from the external (proton) lines in the Feynmann diagram The cross section for the procegss+ N — N + vy
gives the main contribution. Thpp bremsstrahlung is was calculated from the pion photoproduction using the
suppressed by destructive interference [14] and is omittedletailed balance principle and the Lorentzian parametriza-
The calculations strongly underpredict the measured crog®n of Prakastet al. [22]. To avoid double countingd
section for the most energetic photons. Bremsstrahlunggobary decay in the intermediate state of the reaction
spectra in BUU [15] forE,, > 100 MeV agree with those 7 + N — N + vy was ignored since it is included im-
obtained in DCM and also have the same deficiency. Aplicitly in the inverse reaction parametrization.
E, < 50 MeV, DCM spectra are significantly lower than ~ To compare the calculations with our data, the calculated
seen experimentally. This is due to the existence of &nergy spectra have been folded with the TAPS response
second source producing thermal hard photons at a latéunction and geometrical acceptance. The folding proce-
stage of the reaction [15,16] which depends on the meadure also included the calculated angular distribution. In
field dynamics and, in particular, on the compressiorFig. 2 we compare the calculated energy spectrum with
properties of nuclear matter. The thermal hard photorthe measured one for the reaction Kr Ni at 60A MeV
yields can obviously not be reproduced by the DCM(for the Ta + Au reaction at 48 MeV, the number of
calculations. detected pions is statistically insignificant for a spectral
The decay processes,’ — yy andA — Ny, which  analysis). The calculated production cross section is
also give rise to hard photons, have been included in DCM8 b, lower than the experimental value 4% = 4 ub
calculations. In the latter process, theisobars come essentially because the pion energy spectrum in DCM is
exclusively from the reactiov + N — A + N. The softer than that seen in the data. This difference can be
v decay of theA’s happens with a branching ratio of explained by the fact that the popular Ver West—Arndt
6 X 1073, As a next step, we have added in the DCMapproximation of the pion production cross section [17],
an additional source of hard photons, associated with thehich is also used in the DCM, fails near the threshold.
processm + N — N + v, which has been neglected so This is plausible in light of recent measurements [23].
far in the description of photon production at intermediateThe photon spectra including all the processes described
energies. earlier are compared to the data in Fig. 1. At energies
Pions were produced in the DCM either directly,+  of aboutm, /2, the decay process’ — yvy presents a
N — N + N + 7, or in two steps througlh-resonance maximum which is, however, significantly lower than the

do/dE (mb/MeV)
H
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