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Large Time Out-of-Equilibrium Dynamics of a Manifold in a Random Potential
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We study the out-of-equilibrium dynamics of an elastic manifold in a random potential using mean-
field theory. We find two asymptotic time regimes: (i) stationary dynamics; (ii) slow aging dynamics
with violation of equilibrium theorems. We obtain an analytical solution valid for all large times with
universal scalings of two-time quantities with space. A nonanalytic scaling function crosses over to
ultrametricity when the correlations become long range. We propose procedures to test numerically or
experimentally the extent to which this scenario holds for a given system.
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The dynamics of an elastic manifold in a quench
random potential is relevant for a large number of expe
mental systems. Examples are flux lattices in high-Tc

superconductors [1], interfaces in random fields [2], cha
density waves, and surface growth on disordered substr
[3]. The competition between elasticity and disord
produces a “glass” state with pinning, slow dynamic
and nonlinear macroscopic response (e.g., leading to
linear resistivity in superconductors [1]). While there is
phenomenological picture [1] based on scaling argume
(droplets) no satisfactory analytical approach is availa
at present for the low-temperature dynamics.

Thestaticsof a d-dimensional elastic manifold embed
ded in aN-dimensional space in the presence of a ra
dom potential was studied by Mézard and Parisi (M
who applied a replica variational Gaussian approximat
(Hartree) forN finite which becomes exact atN ­ ` [4].
The replica symmetry breaking (RSB) solution captur
some of the essential physics in finiteN dimension, such
as sample-to-sample susceptibility fluctuations [4,5], a
predicts the nontrivial (Flory-like) roughness exponentz ;
it allows for a theory [6] of the statics of the vortex glas
state in superconductors relevant to experiments. O
analytical approaches are based on renormalization gr
(RG) methods [6–8] and it is as yet unclear whether th
capture all the physics [9]. Despite the obvious interes
the static approach, it applies by construction to equil
rium (Gibbs measure) properties, which may not hold
experimental times in a glassy system [10].

In this Letter we study, also within the Hartree a
proximation, the dynamics of this problem starting from
random configuration as in a temperature quench. We
that at low enough temperature there is an aging reg
and that the system never reaches equilibrium. Correla
functions depend not only on time differences but a
on the waiting time after the quench. We obtain tw
time scaling with explicit space dependence, a new fea
with respect to mean-field analytical results for glas
systems obtained so far [11–14]. Details will be presen
elsewhere [15].
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This treatment is exact forN ­ `. At finite N it
holdsa priori only within the Gaussian variational ansat
Whether the properties hold qualitatively for true fini
N-dimensional models cannot be answered analytically
present. Good qualitative agreement [11] of the me
field dynamical analytical solution with experiments o
spin glasses suggests that our results forN ­ ` may be
relevant for some systems related to the present mode

Our main purpose is to suggest, on the basis of the e
solution for N ­ `, definitepredictions for the nonequi-
librium dynamics which can be checked numerically a
experimentally. Our results provide a basis for a fini
N analysis. Remarkably, despite the system being ou
equilibrium, some of the results of the MP replica calcu
tion, e.g.,z , are shown to carry through to the dynamic
albeit with a different interpretation in terms of directly ob
servable time-dependent physical quantities.

The model of a manifold of internal dimensiond em-
bedded in a random medium of dimensionN is described,
in terms of anN-component displacement fieldf, f ­
sf1, f2, . . . , fNd, by the Hamiltonian [4]

H ­
Z

ddx

∑
1
2

s=fd2 1 V sssfsxd, xddd 1
m

2
f2

∏
.

m is a mass, which effectively constrains the manifold
fluctuate in a restricted volume of the embedding spaceV
is a Gaussian random potential with correlations

V sf, xdV sf0, x0d ­ 2Nddsx 2 x0dV ssssf 2 f0d2yNddd .

We consider the Langevin dynamics≠tf ­ 2dfH 1

h with khasx, tdhbsx0, t0dl ­ 2Tdabddsx 2 x0ddst 2

t0d. We let the system evolve from a spatially translatio
ally invariant (STI) configuration att ­ 0. It remains
STI at subsequent times. We use the dynamical Har
approximation, exact forN ! `, and which, forN finite,
amounts to substitutingV by an effectiveV̂ [4,14].
The “equilibrium” dynamics (à la Sompolinsky [16]) was
studied for generald in [17]. d ­ 0 was studied in [12]
and an analytical solution at large times was given in [1
© 1996 The American Physical Society



VOLUME 76, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 1996

e
n

i
e

o
r

t

n

fo
ir
i

-

e

h
n

h

ti
e
e

e
n

e
ep-

la-

nt,

nt

l-
e

r in
s

h
to

er,

me

me

-
eir

e-
The quantities of interest in the large-tim
off-equilibrium dynamics are the two-time correlatio
Cxx0 st, t0d ­ 1yNkfsx, td ? fsx0, t0dl and the response
Rxx0 st, t0d ­ 1yNdkfsx, tdlydf sx0, t0djf­0 wheref sx0, t0d
is a small perturbation applied at the space po
x0 at time t0. We also define the mean squar
displacement Dxx0st, t0d ­ 1yNkffsx, td 2 fsx0, t0dgl
and the correlation Bxx0 st, t0d ­ 1yN 3

kffsx, td 2 fsx, t0dg ffsx0, td 2 fsx0, t0dgl. The brackets
and overline represent the average over the thermal n
and the quenched disorder, respectively. The Fou
transformsBk and Rk in the space differencex 2 x0 are
used below, and we denote with tilde equal space (x ­ 0)
two-time functions,B̃ ­

R
k Bk .

A common choice isV szd ­ su 1 zd12gy2s1 2 gd:
“short-range” (SR) correlations correspond togs1 2

dy2d . 1 and “long range” (LR) togs1 2 dy2d , 1.
The static solution [4] is characterized by two exponen
in the LR case, an ultrametric ansatz givesDst

x , x2z with
a roughness exponentzLR ­ s2 2 dy2dys1 1 gd and a
free-energy fluctuation exponentu. In the SR case a
one step RSB ansatz giveszSR ­ s2 2 ddy2. Statistical
rotational symmetry imposesu ­ 2z 1 d 2 2. Thed ­
2 sine-Gordon model is marginal and solved [6] by a o
step RSB.

Aging.—Let us describe the picture that emerges
large times andm . 0. Equal-time quantities reach the
asymptotic values which do not necessarily coincide w
the equilibrium ones [11,15]. For two-time quantities w
consider two different regimes of the times.

(i) After a large waiting timetw, Bkst 1 tw , twd first
grows witht in a manner independent oftw, from 0 up to
the Edwards-Anderson parameter for the modek defined as
b1

k ; limt!` limtw!` Bkst 1 tw , twd. In this time regime
the displacement is time-translation invariant (TTI); w
denote itbF

k std ­ limtw!` Bkst 1 tw , twd. The response
rF

k std ­ limtw!` Rkst 1 tw , twd satisfies fluctuation dis
sipation theory (FDT)rF

k std ­ s1y2Td≠tbF
k stdustd. The

“FDT regime” is very much like an equilibration in a stat
the manifold looks pinned with an effective massM, since
b1

k ­ 2Tysk2 1 Md (for m ! 0).
(ii) However, for all tw and sufficiently larget,

Bkst 1 tw , twd continues to grow beyondb1
k up to b0

k ;
limt!` Bkst 1 tw , twd. The growth ofBk now depends
on tw : the largertw the slower the motion of the system
it ages. Thus pinning is gradual: the older the system t
longer it is pinned but it is not pinned forever. The agi
time regime is defined (fortw ! `) as the timest such
that Bkst 1 tw , twd . b1

k . We denote bybkst 1 tw , twd
and rkst 1 tw , twd the displacement and response in t
aging regime, where both TTI and FDT are violated.

As regards the measurements of noise and suscep
ity (i) corresponds to high frequencies while (ii) corr
sponds to low frequencies (scaling with the waiting tim
such that noise and susceptibility depend ontw . In a
domain-growth process (i) corresponds to the fast th
mal fluctuations of the spins around their mean mag
nt
d

ise
ier

s:

e

r

th
e

e

;

,
e
g

e

bil-
-
)

r-
e-

tization while (ii) corresponds to the actual growth of th
domains. An important measurable quantity is the susc
tibility xkst, t0d ­

Rt
t0 ds Rkst, sd of the modek, i.e., the

total linear response to an external force of spatial modu
tion k applied during the intervalft0, tg. The results below
imply xkstw 1 t, twd ­ k22Ffk2x0stw 1 t, twdg, where
x0stw 1 t, twd21 is a “running” effective mass which ex-
clusively depends on times through the local displaceme
x0 ­ x0fb̃g, and goes to zero at large time separationt.
The typical internal distance,p

x0 , b̃1yz grows slower
with t as the agetw increases.

We study m ! 0 after the large-time limit. If one
takesm ­ 0 from the start, one must take into accou
diffusion: Bxxst, 0d ! ` at larget since

R
dk b0

k ­ `. In
addition to theaging regime defined ast, t0 ! ` with
Bxxst, t0d fixed, there is then adiffusion regime where
Bxxst, t0dyBxxst, 0d is fixed [15]. Our results forBk andRk

are expected to hold also atm ­ 0 in the aging regime.
Generalization of equilibrium theorems, two-time sca

ings.—Let us describe in more detail the aging regim
as derived below. For large times, the precise manne
which TTI is violated is described by “triangle” relation
[11] involving any three times

Bkstmin, tmaxd ­ fksssBkstmin, tintd, Bkstint, tmaxdddd , (1)

while the violation of FDT is given by

Rkst, t0d ­ XkfBkst, t0dg≠t0Bkst, t0d , (2)

where (2) means thatXk depends on the times only throug
Bkst, t0d. In order to complete this ansatz, we have
specify howfk and Xk for different k are related to one
another. This is done below in an algebraic mann
implying no new hypotheses with respect to thed ­ 0 case
[11,14]. We find that

Bkst, t0d ­ Bkfk, B0st, t0dg , (3)

i.e., all k modes depend on timesonly throughthe depen-
dence of one of them. Thus one can use any two-ti
function, e.g.,B0st, t0d or B̃st, t0d, to parametrize the two-
time dependence. We also show

XkfBkg ­ XkfffBkfk, B0gggg ­ X0fB0g ­ X̃fB̃g , (4)

i.e., the values of allXk are the same for times such thatB0
takes the same value. We have also definedX̃fb̃st, t0dg ­
r̃st, t0dy≠t0 b̃st, t0d. Equation (4) implies that ifX is time
independent in the aging regime, then it takes the sa
value for allk. Hence, for thek-mode susceptibility we
havexkst, t0d ­ xkfk, x0st, t0dg. These functional depen
dences are testable using two-time parametric plots. Th
explicit forms are determined below.

We find the following: (i) in the FDT regimeBk , b1
k ,

XkfBkg ­ 21y2T and (ii) in the aging regimeb0
k .

bk . b1
k there are two distinct cases. For SR corr

lations Xksbkd ­ X and fk has the form fksu, yd ­
;21

k sss;ksud;ksydddd. This impliesBkst, t0d ­ ;21
k ssshst0dyhstdddd

wherehstd is increasing and independent ofk. For LR
correlationsXksbkd is a nonconstant function ofbk . The
functionfk is fksu, yd ­ maxsu, yd.
2391
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satz,
int, using
d

Formal solution for the spatial scaling.—In order to extract the scaling properties and justify the above an
we encode the correlation and response functions in the superspace order parameter [18]. At the saddle po
causalityQxx0 s1, 2d ­ Cxx0st1, t2d 1 su2 2 u1d fu2 Rxx0st1, t2d 1 u1 Rx0xst2, t1dg. Theu’s are Grassmann variables an
we denote1 ; st1, u1, u1d, d1 ; dt1du1du1, ds1 2 2d ; su2 2 u1d su2 2 u1ddst2 2 t1d, and Ds2ds1d ; ≠u1 s≠u1

2

u1≠t1d. We use two types of functions of the superorder parameter: “operator” as inQ2
xx0s1, 2d ­

R
d3Qxx0s1, 3dQxx0s3, 2d

and “pointwise” as inQ≤ 2
xx0 s1, 2d ­ fQxx0 s1, 2dg2.

The equation of motion, exact forN ­ `, is√
Ds2d 2 =2 1 m 1

Z
d3V 0≤sss Bxxs1, 3d ddd

!
Qxx0 s1, 2d 2 ddsx 2 x0dds1 2 2d 2 2fV 0≤sBxxdQxx0g s1, 2d ­ 0 , (5)
a
r

n
(6
a

y
s

io
n

s
to

l

whereBxx0 s1, 2d ­ Qxx0s1, 1d 1 Qxx0s2, 2d 2 2Qxx0 s1, 2d.
Using space translational invariance one finds that

Fourier modesQk can be expressed in terms of the ze
modeQk­0 ; Q0 through the operator relation

Qks1, 2d ­ fk2d 1 Q21
0 g21s1, 2d . (6)

This scaling relation encodes the correlation and respo
functions with two times and space. Substituting Eq.
into Eq. (5) one can write a separate equation for e
mode and map the problem of eachBkst, t0d, Rkst, t0d into
an effectived ­ 0 problem with a complicated memor
kernel [19]. Up to now we have made no approximation
Note that one can now solve numerically the equat
for one of the modes and recover the space depende
tio

o
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algebraicly from Eq. (6). This implies that an ansatz a
in problems without space dependence [11,14] applies
each mode and justifies Eqs. (1) and (2).

Now, in the large time limit any operator functionFfQAg
of an order parameterQA, which can be parametrized
by fA, XA, yields a newQB ­ FfQAg which can also,
at long times, be parametrized withfB, XB. The explicit
computation offB, XB in terms offA, XA has been done
[13] and when applied to Eq. (6) yields explicit functiona
relations betweenQk, Bk , and Q0 and, in particular,
Eqs. (3) and (4) for the componentsBk , Rk .

Explicit calculations.—We can now establish the large
time equations in both regimes. In the FDT regimerF

k ­
2xF≠tbF

k std with xF ­ 21y2T and one finds
regime
dbF
k std
dt

­ 2T 2 fk2 1 M 1 4xFV 0sb̃1dgbF
k std 1 4xF

d
dt

Z t

0
dt0 V 0sssb̃F st 2 t0ddddbF

k st0d . (7)

Neglecting the time derivatives on the left hand side of the full dynamical equations and integrating over the FDT
(see [11,14]) one finds the equations for the aging regime

0 ­ rkst, t0d sk2 1 Md 1
2b1

k

T
V 00sssb̃st, t0ddddr̃st, t0d 1 4

Z t

t0

ds V 00sssb̃st, sddddr̃st, sdrkss, t0d , (8)

0 ­ 2 bkst, t0d sk2 1 Md 1
2b1

k

T
fV 0sb̃1d 2 V 0sssb̃st, t0ddddg 1 4

Z t

0
ds fV 0sssb̃st, sddddrkst, sd 1 V 00sssb̃st, sddddr̃st, sdbkst, sdg

1 2T 2 4
Z t0

0
ds fV 0sssb̃st, sddddrkst0, sd 1 V 00sssb̃st, sddddr̃st, sdbkst0, sdg 2 4

Z t

t0

ds V 00sssb̃st, sddddr̃st, sdbkss, t0d . (9)
rm
M ; 24 limt!`

Rt
0 ds V 00sssb̃st, sddddr̃st, sd is the “anom-

aly.” These equations have time-reparametriza
invariance which prevent determininghstd. “Quasistatic”
valuesb̃1, b1

k follow from letting t0 ! t2 in Eq. (9):

b1
k ­ 2Tysk2 1 Md . (10)

Similarly, Eq. (8) integrated overk yields either the
high-T solutionr̃st, t2d ­ 0 or the low-T condition

1 ­ 24V 00sb̃1d
Z

k
sk2 1 Md22. (11)

This implies M ­ f24cdV 00sb̃1dg2ys42dd and b̃1 ­
24Tcdysd 2 2d f24cdV 00sb̃1dgsd22dys42dd for d , 4,
where cd ­

R
ksk2 1 1d22. Thus it is not necessary t

know the details of the aging solution to determineb1
k , b̃1,

andM.
FDT regime.—Defining fstd ­ 4fV 0sssb̃Fstdddd 2

V 0ssssb̃1ddddg, the Laplace transform int of Eq. (7) yields
n
bF

k ssd ­ sxFsd21fk2 1 M 1 s 2 xFsfssdg21. (12)

At small t, bF
k std , f1 2 exps2AktdgyxFAk with Ak ­

k2 1 M 2 xFfs0d. Whenbint
k , 1yxAk there is a cross-

over to a slower regime where one can neglect the te
s (dydt) and find a power law behavior:bF

k std ­ b1
k 2

csb1
k d2t2b with b determined by [17]Gf1 2 2bgGf1 2

bg22 ­ xFY sb̃1d and Y sb̃1d ­ 4V 00sb̃1d2V 000sb̃1d21 3

≠M ln
R

ksk2 1 Md22. An explicit calculation gives
Y sb̃1d ­ 4yX̃sb̃1d in terms of the functionX̃sb̃d defined
by Eq. (17).

Aging regime in short-range models.—Power law mod-
els are short range forg . gc ­ 2ys2 2 dd andd # 2.
With the ansatzXkfbkst, t0dg ­ X Eqs. (8) and (9) reduce
to a single equation forbkst, t0d. One must haveX ­
2My4V 0sb̃1d. As discussed abovebkst, t0d ­ j21

k ssshst0dy
hstdddd. Defining u ­ lnhstd one hasbkst, t0d ­ Bksu 2

u0d where0 , u , ` andBks0d ­ b1
k andBks`d ­ b0

k .
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Remarkably, we obtain

0 ­ 2T 2 fk2 1 M 1 4XV 0sb̃1dgBksud 1 4X
d Z u

du0 V 0sssB̃su 2 u0ddddBksu0d 1 4sX 2 xFd fV 0sb̃1d 2 V 0sssB̃suddddg ,

du 0

ly

on

)

-

of

s
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s.
cal

g
-
G

xi-
m

he
on
ch
s.

a

s

be

M.
which is formally similar to Eq. (7) though in a complete
different variable. Laplace transforming inu one gets
(with fsud ­ 4fV 0sssB̃sudddd 2 V 0ssssb̃1ddddg)

Bkssd ­ b1
k 1 sXsd21

3 hsk2 1 Md21 2 fk2 1 M 2 Xsfssdg21j .

At the beginning of the aging regimeu ø 1, we
obtainBksud ­ b1

k 2 4V 00sb̃1d sk2 1 Md22ua , and thus
for t0 , t

b̃st, t0d 2 b̃1 , lnafhstdyhst0dg , cstwd stytwda , (13)

where cstwd ­ fd lnhstwdyd lntwga. If hstd ­ td, we
recover the trap-model scaling wherecstwd is a constant
[20]. The exponenta is determined by

Gf1 1 2agGf1 1 ag22 ­ XY sb̃1d . (14)

For the power law model,xY sb̃1d ­ s4 2 ddgy2s1 1 gd
which a ! 0 when g ! g1

cr ­ 2ys2 2 dd and shows
how ultrametricity ing , gcr is approached.

At widely separated timesu ! `, the approach tob0
k

is described by a scaling form ofk2u:

bkst, t0d ­ b1
k

µ
1 2

xF

X

∂
2

1
Xk2

∑
1 2

µ
hst0d
hstd

∂k2yXZ∏
,

where Z ­
R

du fsud is a constant, finite forg . gcr .
Integrating overk we also obtain the large time separati
behaviorb̃st, t0d ~ ln12dy2fhstdyhst0dg.

Aging regime for long-range models.—These mod-
els are solved by the ultrametric ansatzbkst, t0d ­
maxfbkst, sd, bkss, t0dg, which inserted into (8) and (9
leads [15] to a single equation parametrized byb̃,

xkst, t0d ­ xkfb̃g ­ fk2 1 M 2 Msb̃dg21 (15)

after simple manipulations as in [14]. We defineMfb̃g ­

24
Rb̃1

b̃ V 00sb̃0dX̃fb̃0gdb̃0 and use (2)–(4). Taking a de
rivative with respect tob̃, using ≠b̃xkfbkg ­ X̃fb̃g≠b̃bk ,
dividing by X̃fb̃g and integrating over̃b, one gets

bk ­ b1
k 1

Z b̃1

b̃
db̃0 4V 00sb̃0d

fk2 1 M 2 Msb̃0dg2
. (16)

This implies the self-consistency condition1 ­
4V 00sb̃d

R
kfk2 1 M 2 Msb̃dg22 which coincides with

the marginality condition for the replicon. One obtains

X̃sb̃d ­ 2adV 000sb̃d f2V 00sb̃dg2sd23dys42dd (17)

with ad ­ s4 2 dd s4cdd2ys42ddy2. This result, derived in
a rather simple way, is formally identical to the result
the statics [4] and is hereshown to apply directly to the
nonequilibrium dynamics. The self-energy of the static
fsg sud is thus formally identified withM 2 Msb̃d.

One general prediction for the aging regime of manifo
is the scaling form
s

bsx, t, t0d ­ bx­0st, t0dHfxybx­0st, td1y2z g , (18)

which holds at largex and large, widely separated time
The Hartree method yields a remarkably simple analyti
form. Using (16) one finds [15]≠b̃bk ­ 24V 00sb̃dyhk2 1

f24V 00sb̃dcdg2y42dj2, e.g., in real space ind ­ 3, ≠b̃bx ­
expfV 00sb̃dxy2pg. One speculates that similar scalin
properties of finiteN-nonequilibrium dynamics—and pos
sibly aging effects—be captured by extensions of the R
[9] for the statics, going beyond the FDT usuallyassumed
in dynamic RG.

In conclusion, we described, using the Hartree appro
mation, the features of aging of a manifold in a rando
medium. This provides a frame of reference for t
analysis of data from experiments and simulations
realistic systems and will allow one to determine in ea
case whether such a regime exists and up to what time
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