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Large Time Out-of-Equilibrium Dynamics of a Manifold in a Random Potential
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We study the out-of-equilibrium dynamics of an elastic manifold in a random potential using mean-
field theory. We find two asymptotic time regimes: (i) stationary dynamics; (ii) slow aging dynamics
with violation of equilibrium theorems. We obtain an analytical solution valid for all large times with
universal scalings of two-time quantities with space. A nonanalytic scaling function crosses over to
ultrametricity when the correlations become long range. We propose procedures to test numerically or
experimentally the extent to which this scenario holds for a given system.

PACS numbers: 74.60.Ge, 05.20.—y

The dynamics of an elastic manifold in a quenched This treatment is exact foN = «. At finite N it
random potential is relevant for a large number of experiholdsa priori only within the Gaussian variational ansatz.
mental systems. Examples are flux lattices in High- Whether the properties hold qualitatively for true finite
superconductors [1], interfaces in random fields [2], charge&v-dimensional models cannot be answered analytically at
density waves, and surface growth on disordered substratesesent. Good qualitative agreement [11] of the mean
[3]. The competition between elasticity and disorderfield dynamical analytical solution with experiments on
produces a “glass” state with pinning, slow dynamics,spin glasses suggests that our resultsNor= « may be
and nonlinear macroscopic response (e.g., leading to zerelevant for some systems related to the present model.
linear resistivity in superconductors [1]). While thereisa Our main purpose is to suggest, on the basis of the exact
phenomenological picture [1] based on scaling argumentsolution for N = o, definite predictions for the nonequi-
(droplets) no satisfactory analytical approach is availabldéibrium dynamics which can be checked numerically and
at present for the low-temperature dynamics. experimentally. Our results provide a basis for a finite-

The staticsof a d-dimensional elastic manifold embed- N analysis. Remarkably, despite the system being out of
ded in aN-dimensional space in the presence of a ranequilibrium, some of the results of the MP replica calcula-
dom potential was studied by Mézard and Parisi (MP}tion, e.g.,{, are shown to carry through to the dynamics,
who applied a replica variational Gaussian approximatioralbeit with a different interpretation in terms of directly ob-
(Hartree) forN finite which becomes exact &t = « [4].  servable time-dependent physical quantities.

The replica symmetry breaking (RSB) solution captures The model of a manifold of internal dimensiehem-
some of the essential physics in finftedimension, such bedded in a random medium of dimensiris described,
as sample-to-sample susceptibility fluctuations [4,5], andnh terms of anN-component displacement fieldl, ¢ =
predicts the nontrivial (Flory-like) roughness exponént (¢1, ¢2,..., dn), by the Hamiltonian [4]

it allows for a theory [6] of the statics of the vortex glass 1

state in superconductors relevant to experiments. Other H = ddx[— (Vop)? + V(d(x),x) + ﬂdﬂ]
analytical approaches are based on renormalization group 2 2

(RG) methods [6—8] and it is as yet unclear whether they, is a mass, which effectively constrains the manifold to
capture all the physics [9]. Despite the obvious interest ofluctuate in a restricted volume of the embedding spdce.
the static approach, it applies by construction to equilibis a Gaussian random potential with correlations

rium (Gibbs measure) properties, which may not hold for

experimental times in a glassy system [10]. Vi, x)V(d',x') = —N&%x — x V(¢ — ¢')*/N).
In this Letter we study, also within the Hartree ap- _ _ _
proximation, the dynamics of this problem starting from a We consider the Langevin dynamiésp = —54H +

random configuration as in a temperature quench. We fing With (na(x,0)ng(x’,1')) = 2T 8,58%x — x')8(r —

that at low enough temperature there is an aging regimé). We let the system evolve from a spatially translation-
and that the system never reaches equilibrium. Correlatio@lly invariant (STI) configuration at = 0. It remains
functions depend not only on time differences but alscSTI at subsequent times. We use the dynamical Hartree
on the waiting time after the quench. We obtain two-approximation, exact foN — o, and which, forv finite,
time scaling with explicit space dependence, a new featuramounts to substituting) by an effective V [4,14].
with respect to mean-field analytical results for glassyThe “equilibrium” dynamicsd la Sompolinsky [16]) was
systems obtained so far [11—-14]. Details will be presentedtudied for generad in [17]. d = 0 was studied in [12]
elsewhere [15]. and an analytical solution at large times was given in [14].
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The quantities of interest in the large-time tization while (ii) corresponds to the actual growth of the
off-equilibrium dynamics are the two-time correlation domains. Animportant measurable quantity is the suscep-
Co(t,t') = 1/N{p(x,1) - d(x',¢')) and the response tibility yi(t,t) = fﬁ, ds R (t,s) of the modek, i.e., the
Ryv(t,1") = 1/N&8{(¢p(x,1))/8f(x', )| ;=0 wheref(x/,7')  total linear response to an external force of spatial modula-
is a small perturbation applied at the space pointion k applied during the interval’, ]. The results below
x' at time t. We also define the mean squaredimply yi(t, + 7,t,) = k 2F[k*>xo(t,, + 7,t,)], Where
displacement D, (t,t') = 1/N{¢(x,t) — ¢(x',t")])  xoltw + 7.1,) ' is a “running” effective mass which ex-
and the correlation B (t,t') = 1/N X clusively depends on times through the local displacement,
(P(x,1) — Pp(x,)][p(x',1) — d(x',1')]). The brackets yo = xo[b], and goes to zero at large time separation
and overline represent the average over the thermal noisghe typical internal distance./xo ~ b'/¢ grows slower
and the quenched disorder, respectively. The Fouriewith = as the age,, increases.

transformsB; and R in the space difference — x’ are We study u — 0 after the large-time limit. If one
used below, and we denote with tilde equal space=(0) takesu = 0 from the start, one must take into account
two-time functionsB = [, By. diffusion: B,.(r,0) — o at larger since [ dk by = . In

A common choice isV(z) = (0 + z)!77/2(1 — y):  addition to theaging regime defined as, + — o with
“short-range” (SR) correlations correspond %1 —  B,.(¢,t') fixed, there is then aliffusion regime where

d/2) > 1 and “long range” (LR) toy(l — d/2) < 1.  B,(t,t')/B.(t,0) is fixed [15]. Our results foB; andR;

The static solution [4] is characterized by two exponentsare expected to hold also at= 0 in the aging regime.

in the LR case, an ultrametric ansatz giv&$ ~ x2¢ with Generalization of equilibrium theorems, two-time scal-
a roughness exponedir = (2 — d/2)/(1 + y) and a ings—Let us describe in more detail the aging regime
free-energy fluctuation exponemt In the SR case a as derived below. For large times, the precise manner in
one step RSB ansatz givésr = (2 — d)/2. Statistical which TTI is violated is described by “triangle” relations

rotational sa/mmetré/ ilmposdds= ZIZ +dd _I Za Theél = [11] involving any three times

2 sine-Gordon model is marginal and solved [6 aone

Step RSB. g [ ] y Bk(tminstmax) = fk(Bk(tmin’tint)s Bk(tinta tmax))s (1)
Aging—Let us describe the picture that emerges forwhile the violation of FDT is given by

large times angk > 0. Equal-time quantities reach their Ri(t,1") = Xi[By(t, )]0, By (1, 1), )

asymptotic values which do not necessarily coincide with X
the equilibrium ones [11,15]. For two-time quantities we Where (2) means tha, depends on the times only through

consider two different regimes of the times. Bk(t,.t’). In order to complete this ansatz, we have to
(i) After a large waiting timer,,, B(r + 1,,,1,) first specify howf!( a_nka for dlffere_ntk are relateq to one

grows with7 in a manner independent of, from 0 up to another. This is done below in an algebraic manner,

the Edwards-Anderson parameter for the mbdefined as  IMPlying no new hypotheses with respect to the- 0 case

by = lim,—.lim, —. By(r + 1,.1,). Inthis time regime [11,14]. We find that

the displacement is time-translation invariant (TTI); we Bi(t,t") = Bilk,Bo(t,t')], (3)

. F o
d?note ithy (r) = limy, . Bi(7 + £y,1,). Theresponse g a)lx modes depend on timesly throughthe depen-
ri (1) = lim; o Ri(7 r tw, tw) saUsﬂesJIuctuatlon dis- dence of one of them. Thus one can use any two-time
sipation theory (FDT); (1) = (1/2T)d.b; (7)0(7). The  function, e.g.,Bo(t, t') or B(t,1'), to parametrize the two-
“FDT regime” is very much like an equilibration in a state; time dependence. We also show
the manifold looks pinned with an effective mads since

bl =27 /(k2 + M) (for u — 0). Xi[Bi] = Xi[Bi[k. Bo]] = Xo[Bo] = X[B]. (4)
(i) However, for all r, and sufficiently larger, i.e., the values of alk; are the same for times such thiat
Bi(t + 1,,1,) continues to grow beyond} up toby =  takes the same value. We have also defikigilz, /)] =

lim,—w Bi(T + t,,1,). The growth ofB;, now depends 7(z,t)/d.b(t,t'). Equation (4) implies that i is time
ont,: the largerr, the slower the motion of the system, independent in the aging regime, then it takes the same
it ages Thus pinning is gradual: the older the system thevalue for allk. Hence, for thek-mode susceptibility we
longer it is pinned but it is not pinned forever. The aginghavexi(z,¢) = x«[k, xo(t,t')]. These functional depen-
time regime is defined (for, — ) as the times such  dences are testable using two-time parametric plots. Their
that Bi(t + ty,t,) > bi. We denote byb(r + 1,,,1,)  explicit forms are determined below.
and ri(r + t,,1t,) the displacement and response in the We find the following: (i) in the FDT regimé; < bi,
aging regime, where both TTI and FDT are violated. Xi[B:] = —1/2T and (ii) in the aging regimeby >

As regards the measurements of noise and susceptibiby > b; there are two distinct cases. For SR corre-
ity (i) corresponds to high frequencies while (ii) corre- lations X,(by) = X and f; has the form fi(u,v) =
sponds to low frequencies (scaling with the waiting time);; ' ()7« (v)). This impliesBi(z, ') = i ' (h(t')/ (1))
such that noise and susceptibility depend mn In a  whereh(z) is increasing and independent bf For LR
domain-growth process (i) corresponds to the fast thereorrelationsX,(b;) is a nonconstant function d@f,. The
mal fluctuations of the spins around their mean magnefunction f; is fi(u, v) = maxXu, v).
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Formal solution for the spatial scaling=In order to extract the scaling properties and justify the above ansatz,
we encode the correlation and response functions in the superspace order parameter [18]. At the saddle point, using
causalityQ,,/(1,2) = Cyu(t1,12) + (02 — 01) [62 Rew(t1,12) + 01 Rey(t2,11)]. Thed’s are Grassmann variables and
we denotel = (t1,01,51), dl = dtldﬁldgl, 5(1 - 2) = (02 - 01)(52 - 51)5(22 - tl), and D(z)(l) = ag](agl -
619,,). We use two types of functions of the superorder parameter: “operator'@sii, 2) = [ d30.v(1,3)Q:v(3,2)
and “pointwise” as inQ$(1,2) = [Q.(1,2)].
The equation of motion, exact fof = o, is

(D(z) -V + mt fd3v/.(Bxx(1’ 3) ))Qxx’(lv 2) — Bd(x - x’)6(1 -2) - Z[V/.(Bxx)Qxx’] (1’2) =0, (5)

whereB,(1,2) = Q. (1,1) + 0. (2,2) — 20..(1,2). | algebraicly from Eqg. (6). This implies that an ansatz as
Using space translational invariance one finds that alin problems without space dependence [11,14] applies to
Fourier moded); can be expressed in terms of the zeroeach mode and justifies Egs. (1) and (2).
modeQ;—o = Qo through the operator relation Now, in the large time limit any operator functiédiQ 4 |
2 -1 of an order paramete®@,, which can be parametrized
0:(1.2) = [k°6 + 0 1 (1.2). (6) by fa,Xu4, yi(flds a ningB = F[Q4] Whicﬁ can also,
This scaling relation encodes the correlation and responsa long times, be parametrized wifiy, Xz. The explicit
functions with two times and space. Substituting Eq. (6)computation offs, X3 in terms of f4, X4 has been done
into Eq. (5) one can write a separate equation for eacfiL3] and when applied to Eq. (6) yields explicit functional
mode and map the problem of eaBh(z, '), Ri(z,¢') into  relations betweernQ;, B, and Q, and, in particular,
an effectived = 0 problem with a complicated memory Egs. (3) and (4) for the componerBg, Ry.
kernel [19]. Up to now we have made no approximations. Explicit calculations—We can now establish the large
Note that one can now solve numerically the equatiortime equations in both regimes. In the FDT reginje=

for one of the modes and recover the space depend?neecFaTb,f(r) with xp = —1/2T and one finds
F T
—dbd"T(T) =2T — [k* + M + 4xp V'Y (1) + 4XF% ] dr' V(6" (r — )b (). )
0

Neglecting the time derivatives on the left hand side of the full dynamical equations and integrating over the FDT regime
(see [11,14]) one finds the equations for the aging regime

1 t
0=re(e,t") (K2 + M) + % V' (b(t, )Pt 1) + 4[ ds V'"(b(t, s)7(t, s)ri(s, 1), (8)

2!

0= — be(t,t") (kK* + M) + -

[V'(B") — V'(b(t,1)] + 4];) ds[V'(b(t,s))ri(t,s) + V"(b(t,5)F(t,s)bi(t,s)]

+ 2T — 4ft ds[V'(b(t,s))r(t',s) + V"(b(z,5)7(t, s)be(t',5)] — 4]tds V(b(t,s)F(t, s)b(s, ). (9)
0 /

t

M= —41lim—w ff) ds V'"(b(t,s))7(t,s) is the “anom- | bE(s) = (xps) [k + M + s — xpsp(5)]L. (12)

aly.” These equations have time-reparametrization F .

. . ; - “ o Atsmall 7, by (1) ~ [1 — exp(—Ag7)]/xpAr With A; =
ariance which prevent determin . asistatic = k - :

nvart {ynicn prev rminirigr). “Quasistatl k* + M — xpp(0). Whenb™ ~ 1/xA; there is a cross-

valuesb!, b; follow from letting ¢ — ¢_ in Eq. (9): .
k 9 a. (9) over to a slower regime where one can neglect the term

by =2T/(k* + M). (10) s (4/dr) and find a power law behaviob (1) = b} —
Similarly, Eq. (8) integrated ovek yields either the ¢(b;)*r # with B determined by [17[1 — 28]I[1 —
high-T solution#(¢,t_) = 0 or the lowT condition B2 =xpY(b') and Y(b') =4 V"B V(B! X
dyrIn [,(k> + M)"2.  An explicit calculation gives
1 = —4V”(l§1)](k2 + M) (11)  Y(b') = 4/X(b") in terms of the functionX(5) defined
k by Eq. (17).
This implies M = [—4c, V"(B)“ 9 and b' = Aging regime in short-range models.Power law mod-

—A4Tey/(d — 2)[—4c, V" (b)) @2/ for d <4, els are short range foy > vy, = 2/(2 — d) andd = 2.
wherecy, = [, (k*> + 1)72. Thus it is not necessary to With the ansatZ;[b.(r,7')] = X Egs. (8) and (9) reduce
know the details of the aging solution to determirfe5!,  to a single equation fob,(r,7/). One must haveX =
andM. ~M/4V'(B"). As discussed above.(r,t') = j; '(h(t')/
FDT regime—Defining ¢ (r) =4[ V'(bF(r)) —  h(1)). Definingu = Ink(r) one hash(t,t') = Bi(u —
V'((b1))], the Laplace transform in of Eq. (7) yields u') where0 < u < « andB,(0) = b} andBi() = bY.
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Remarkably, we obtain

0=2T —[k> + M +4XV'(b")]Bi(u) + 4X % f du' V(B — u)Be(u') +4X — xp) [ V(") — VI(Bw))],
0

which is formally similar to Eq. (7) though in a completely
different variable. Laplace transforming in one gets
(with ¢ (u) =4[ V'(Bw)) — V'((6'))])
Bk(s) = b,l + (XS)_1
X{k? + M)"' — [k* + M — Xs¢p(s)]'}.

At the beginning of the aging regime < 1, we
obtain By (u) = by — 4V"(b') (k* + M) 2u®, and thus
fore ~ ¢

b(1,1') = b' ~In*[n()/h(t)] ~ c(t,) (v/1,)*, (13)

where ¢(t,,) = [dInh(z,,)/d Int,,]J*. If h(r) =, we
recover the trap-model scaling wher€,,) is a constant
[20]. The exponentr is determined by

I'[1 + 2a]T[1 + a] % = xXY(B). (14)

For the power law modekY (b') = (4 — d)y/2(1 + )
which ¢« — 0 when y — y} =2/(2 — d) and shows
how ultrametricity iny < y,, is approached.

At widely separated times — o, the approach td;
is described by a scaling form &fu:

b(t,t) = b,l(l - %) - #[1 _ <%>k2/xz}

where Z = [du ¢(u) is a constant, finite fory > y,,.

Integrating ovek we also obtain the large time separation

behaviorb(z, ') o In'=4/2[h(r)/h(t")].

Aging regime for long-range models.These mod-
els are solved by the ultrametric ansabz(z,t') =
max bi(t, s), bi(s,t')], which inserted into (8) and (9)
leads [15] to a single equation parametrizedbhy

xi(t,1") = bl = [&* + M — M(b)]™! (15)
after simple manipulations as in [14]. We defingb] =
—4 2 V"(B)X[b')db’ and use (2)—(4). Taking a de-
rivative with respect tab, using s xi[bi] = X[b]os by,
dividing by X[b] and integrating oveb, one gets

b 4’\///(5/)
= 1+] ! —
e bt ) e - MG
This implies the self-consistency condition =
4V"(b) [,[k* + M — M(b)]"*> which coincides with
the marginality condition for the replicon. One obtains
X(B) = —a, V"B [ V"GO a7

with ag = (4 — d) (4cg)*“=9 /2. This result, derived in

a rather simple way, is formally identical to the result o
the statics [4] and is herghown to apply directly to the
nonequilibrium dynamics The self-energy of the statics
[o] () is thus formally identified withd — M (D).

(16)

b(x,1,1") = byo(t, ! H[x/by=o(t,1)"/*],  (18)

which holds at larger and large, widely separated times.
The Hartree method yields a remarkably simple analytical
form. Using (16) one finds [15];b = —4 V" (b)/{k* +
[—4V"(b)c 49}, e.q., inreal space ith = 3, 9;b, =
exd V'(b)x/2m]. One speculates that similar scaling
properties of finitevV-nonequilibrium dynamics—and pos-
sibly aging effects—be captured by extensions of the RG
[9] for the statics, going beyond the FDT usuadlysumed

in dynamic RG.

In conclusion, we described, using the Hartree approxi-
mation, the features of aging of a manifold in a random
medium. This provides a frame of reference for the
analysis of data from experiments and simulations on
realistic systems and will allow one to determine in each
case whether such a regime exists and up to what times.
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