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We have developed a new simulation program that correctly models the transverse beam
dynamics of beams with arbitrary distribution and ellipticity, ine1e2 colliders. We find that the
dynamics, and hence the achievable luminosity, is limited by two kinds of coherent phenome
the flip-flop effect and period-n beam-size oscillations. While both solutions coexist, the former
typically stronger and occur at lower currents than the latter. These results are in broad agreeme
experimental observations, and suggest that greater care needs to be taken in the choice of o
parameters of the high-luminosityB factories that are presently under construction.

PACS numbers: 41.75.Ht, 29.20.Dh, 29.27.Bd
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The event rate per unit cross section of a high-ener
reaction is defined as theluminosityof a storage-ring col-
lider. In order to effectively study rare events, such asCP
violation in B-meson systems, it is necessary to maximi
the luminosity of the collider. It is widely believed tha
the most important factor limiting the luminosity ofe1e2

colliders is the beam-beam interaction—the effect of t
electromagnetic fields of one beam on the particles of
other. Although the beam-beam interaction has been st
ied with a wide variety of theoretical, experimental, an
computational techniques, the dynamical reason for t
beam-beam limit is not well understood.

One potential source of this limitation is coheren
(or collective) beam-beam phenomena that act to dist
the beam shape. In one such effect, beams that s
out with equal sizes end up in a steady state w
very unequal sizes: one of the beams gets blown
transversely to a very large size, while the other rema
small. Consequently, the overlap integral is small, a
the luminosity is limited. This effect is widely observe
in operating colliders and is called theflip-flop instability
or pitchfork bifurcation. It may be looked upon as on
possible solution to the coherent nonlinear dynamics, a
we henceforth refer to it as the “F solution.”

In another possible solution, predicted earlier for beam
with a round transverse profile (i.e., axisymmetric beam
[1], there are coherent oscillations in the sizes of t
two beams: the beam sizes vary from turn to turn in
fixed n-fold pattern (wheren is a small integer). On any
given turn, typically one beam is dense while the oth
is hollow, so that the overlap between the beams is ag
poor, and the luminosity is limited. These are describ
asperiod-n anticorrelated oscillations, and we henceforth
refer to them as the “O solution.” This kind of behavior
has recently been observed for flat beams at the CE
LEP [2]. It is not clear if the same phenomenon occu
in other colliders since the requisite diagnostics are n
available.

Coherent beam-beam effects have been analyzed w
two different types of models. In the first, of Hirata [3
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and of Chao, Furman, and Ng [4], nonlinear maps for t
colliding beam system are developed in the moments
the distributions. Working under different approximation
they find either flip-flop solutions (F solutions) or period-
n solutions (O solutions), respectively. In the secon
type of model, of Dikansky and Pestrikov [5] and o
Chao and Ruth [6], modes develop in the phase-sp
distributions of the two beams. The stability of thes
modes is analyzed with the linearized Vlasov equatio
assuming small perturbations from equilibrium. The
results are characterized by the appearance of even-o
nonlinear coherent resonances that correspond to thO
solutions. It should be emphasized that no single mo
predicts the existence of both the experimentally obser
phenomena.

Computer simulations are an important tool in the stu
of beam-beam phenomena. Conventionally these have
sumed that the beams always have a Gaussian distr
tion, in order to be able to employ analytical formulas
the calculation of the electromagnetic fields [7]. How
ever, the study of coherent phenomena requires that b
beams be allowed to influence each other, and thoug
beam may start out Gaussian, it cannot retain that sh
after experiencing the nonlinear force that the oppos
Gaussian beam produces. A fully self-consistent calcu
tion therefore requires a numerical algorithm for calcula
ing the beam-beam force from non-Gaussian distributio
Earlier we have developed such an algorithm to predicO
solutions for the dynamics of beams with arbitrary dist
butions but nearly round profiles [1]. However, that a
gorithm fails for the flat beams that coast in all operatin
e1e2 colliders. In this Letter we report results using
new field-calculation algorithm that does away with th
constraint of nearly round beams, and is valid for bea
of arbitrary ellipticity. We find, for the first time, that the
dynamics of flat beams allows for bothO solutions as well
asF solutions.

We assume that the beams collide once per turn
the interaction point (IP). We only model the dynamic
in the two transverse dimensionsX and Y; longitudinal
© 1996 The American Physical Society 235
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dynamics is not included. Particles comprising bo
beams are initialized in a Gaussian distribution in all fo
phase-space dimensions, with any chosen ellipticityk

(defined as the ratio of the horizontal to the vertical be
size; by conventionk $ 1). They are then transporte
from the IP once around the ring using maps for t
betatron transport, the radiation damping and fluctuatio
and the beam-beam interaction. The maps are itera
for a large number of turns, typically until the beam
achieve equilibrium. Let the initial phase-space variab
besX0, Y0d ­ sx0, px0, y0, py0d. Then a single turn around
the ring may be represented as

sX0, Y0d
tpt
! sX0, Y 0d rad

! sX 00, Y 00d BBI
! sX1, Y1d. (1)

We now describe each of these elements briefly.
Betatron transport.—We assume that the magnet

lattice is linear and the horizontal and vertical motions a
uncoupled, so that the (transverse) transport of partic
around the ring can be described by two2 3 2 rotation
matrices,Mx and My, such thatX 0 ­ MxX0 and Y 0 ­
MyY0, where

Mx,y ­

√
cos

°
2pQx,y

¢
bx,y sin

°
2pQx,y

¢
1

bx,y
sin

°
2pQx,y

¢
cos

°
2pQx,y

¢ !
. (2)

Here Qx,y are the tunes (the frequencies of oscillation
normalized to the revolution frequency) in theX and
Y dimensions, andbx,y are theamplitude functionsthat
characterize the magnetic lattice. Both are inputs to
simulation.

Radiation damping and fluctuations.—In a real storage
ring, an electron emits many synchrotron radiation ph
tons in a single turn, causing fluctuations in its energy.
its journey through an rf cavity it gains energy, leading
the phenomenon of radiation damping [8]. In a compu
simulation it is neither practical nor necessary to mod
these distributed phenomena. Instead, one calculates
average effect, over one turn, and puts this in at a sin
point in the ring. We can write [8,9]

X 00 ­ Mr X 0 1 Xf , (3)

where

Mr ­

µ
e2dy2 0

0 e2dy2

∂
(4)

and

Xf ­

0B@ r̂fbxe0xs1 2 e2ddg1y2

r̂

∑
e0x

bx
s1 2 e2dd

∏1y2

1CA , (5)

with a similar equation forY 00. Here d is the average
fractional energy radiated by a particle per turn,e0x is
the horizontal emittance of the beams in the absence
the beam-beam interaction, andr̂ is a Gaussian random
number with zero mean and unit standard deviation.
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Beam-beam interaction.—The model for the beam-
beam interaction assumes that the beams are ultrarelat
tic. In this case the force due to the magnetic field has
same magnitude and direction as that due to the elec
field. One can therefore ignore the magnetic field a
solve the corresponding electrostatic problem (by Loren
transforming to the rest frame of the bunch and solvi
numerically for the electrostatic field from the coordinate
of the test particles comprising the beam). The actu
force on a particle is then twice that given by the electr
static calculation.

The electrostatic field calculation is done on a tw
dimensional Cartesian grid. Particles are cast onto
grid using second-order weighting (quadratic spline). T
Poisson solver is based on the Fourier analysis by cyc
reduction (FACR) method developed by Christiansen a
Hockney and implemented in the codeDELSQPHI [10].
It uses a five-point stencil for the=2 operator. To
calculate the field from the potential, we use a si
point differencing scheme for the gradient operator. F
interpolating from the field at the grid points to an
arbitrary point, we must again use second-order weight
in order to conserve momentum. Further details of t
algorithm are found in Ref. [11].

We have made extensive efforts to test the algorith
We have checked that for sample Gaussian distributio
our numerical solutions for the fields agree with th
corresponding analytical expressions [7]. In addition, t
following diagnostic is built into the code: Every so
many turns (100 at present) the code takes the calcula
potential, differentiates it to get the density along theX
and Y axes, and compares this derived density with t
original density. They are required to agree, at eve
grid point, to within a specified tolerance (10% presently
In the results presented below, this diagnostic did n
turn up any problems with the algorithm; details are
Ref. [11]. In addition, the code was able to reprodu
the results obtained in Ref. [1] for round beams, a
some of the results reported below (fork ­ 2) have
been confirmed independently, using our earlier fiel
calculation algorithm [12]. We have also checked th
our results are independent of the granularity and size
the grid.

We chose storage-ring parameters corresponding
those of the Cornell Electron Storage Ring (CESR). O
first application was to study the dynamics at a tune
Qbs­ Qx ­ Qyd ­ 0.79, with d ­ 1 3 1023. We have
seen in our earlier work that period-3 coherent oscillatio
(O solutions) appear in this region [1]. We studied th
change in the nature of the dynamics as the ellipticity
the beams was varied—in this case fromk ­ 1 (round)
to k ­ 6. The parameters for the flat beams were deriv
from those of the round by requiring that the nomin
luminosity andtune-shift parametersbe identical in the
two cases [9]. We looked at five different current value
between 20 and 40 mA, in steps of 5 mA. Results a
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FIG. 1. Change in the nature of coherent motion as
function of the beam ellipticityk, for different currents. X
! no coherent motion;O ! O solutions (period-3 coherent
oscillations); F ! F solutions (flip-flop). Qb ­ 0.79 and
d ­ 1 3 1023.

shown in Fig. 1. For round beams onlyO solutions are
seen, and the region of coherent activity is restrict
to the range 25–35 mA. As soon as one gets aw
from round beams,F solutions make their appearance
In fact, for lower k these are the only solutions, but a
higher values ofk both kinds of solutions are observed
However, theF solutions always occur at lower currents
and therefore in an actual collider they are more likely
be the luminosity-limiting factor.

Figure 2 shows a typical plot of the evolution of th
horizontal and vertical beam sizes with time (or tur
number), here fork ­ 3, Qb ­ 0.79, and I ­ 30 mA.
In the first 5000 turns or so the two solutions compet
The large beam-size oscillations of theO solutions are
clearly seen in the horizontal dimension, while the vertic
shows an interweaving of the two beam sizes. Ultimate
it is the F solution that is dominant, and hence th
equilibrium state is a flip-flop. However, it takes time
for the system to reach this equilibrium, and experien
shows that one must run the simulation for at lea
10 transverse damping times (20 000 turns in the pres
case) in order to be confident that the beams have ind
settled into equilibrium. In particular cases we have ru
for as long as 25 damping times to confirm that there is
further change in the equilibrium state. The initial ons
of coherent oscillations that later die out to leave behin
a flip-flop is commonly observed, but we have nev
observed the reverse situation, i.e., the beams finding
transientF solution which dies out to leave behind anO
solution as the equilibrium state. This suggests that theF
solution is typically stronger than theO solution.

To look more closely at the difference between flat an
round beams, we explored the structure of the coher
resonances in theI vs Qb plane for both cases. Results
are shown in Fig. 3. For round beams we find, consiste
with our earlier work [1], that coherent behavior consis
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FIG. 2. rms beam size as a function of turn number, f
Qb ­ 0.79, k ­ 3, I ­ 30 mA, andd ­ 1 3 1023. Initially,
period-3 oscillations do set in, but ultimately theF solution
dominates and is the equilibrium solution.

solely ofO solutions, and the domain of coherent behavi
spans a finite, tubular region in the plane. In Fig. 3 th
circles mark the onset and offset currents for this coher
behavior, and outside the solid lines there is no coher
motion. For flat beams (here withk ­ 4), the rectangles
and the dotted line mark the threshold for the onset
coherent motion. AtQb ­ 0.79 and 0.80 there is no
offset threshold—at least up to the maximum current
50 mA that we investigated. AtQb ­ 0.81, however,
there is a clear offset threshold at 22 mA, marked
the figure by the solitary rectangle. The precise natu
of coherent activity is more complicated for flat beam
Near the onset threshold and at very high currents,
equilibrium state is always anF solution. AtQb ­ 0.81
this is the only solution. However, at the other two tun
there is embedded a region where the equilibrium solut
is anO solution. AtQb ­ 0.80 this region is between 28
and 33 mA, and atQb ­ 0.79 between 33 and 42 mA; in
Fig. 3 these onset and offset currents are marked by s
triangles.

Thus, for flat beams coherent motion sets in at sligh
lower currents than in the case of round beams, a
extends out to much higher currents. Both kinds
solutions are supported, but theF solution seems to be
the dominant solution, in that it is found to occur mor
often and it sets in at lower currents than theO solution.

A couple of points need emphasis. First, these coher
phenomena arenot seen in simulations that assum
Gaussian distributions for the beam; they are solely
consequence of the generalized calculations descri
here. We have confirmed this explicitly for round beam
as well as for flat beams withk ­ 4: neither theF
solutions nor theO solutions are seen.
237
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FIG. 3. Stability diagram in theI vs Qb plane, for round
(k ­ 1) and flat (k ­ 4) beams. For round beams the circle
indicate thresholds for the onset and offset of coherent behav
Only O solutions are seen, and the domain of coherent activ
is restricted to the tubular region within the solid lines. Fo
flat beams the squares and the dotted line indicate the on
threshold, whereF solutions are found. ForQb ­ 0.79 and
0.80 there is no offset threshold (at least up to the maximu
current of 50 mA that we investigated). AtQb ­ 0.81 the
offset threshold is at 22 mA, indicated by the solitary rectang
At this tune the equilibrium state is always aF solution, but
at the other two tunes a region ofO solutions can also be
found, the onset and offset currents for which are indicated
solid triangles. The equilibrium state in the various regio
(for the flat beam only) is indicated byF, O, and X for flip-
flop solutions, period-n oscillations, and no coherent motion
respectively.

Second, these simulations show, for the first tim
the simultaneous existence of both kinds of cohere
phenomena that have been experimentally observed.
fact that the flip-flop is the dominant solution is in
qualitative agreement with the general observation of fl
flops in many operating colliders. Nonetheless, perio
n oscillations are observed in our simulations and ha
also been observed at LEP, and we recommend a stron
effort to look for these coherent resonances at oth
colliders.

Because of constraints in the available computing
sources, our results are limited tok # 6, while typical
values fore1e2 colliders are admittedly larger: for ex-
ample,k ­ 33 for the SLACyLBNLyLLNL asymmetric
B factory under construction. Nonetheless, we belie
our results are valid for largerk. For a couple of cur-
rents we have checked this explicitly atk ­ 16 using the
Cray computers of the National Energy Research Sup
computer Center (NERSC).

The observation of these coherent phenomena co
have important implications for theB factories that are
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presently under construction. Our work has been p
formed with a damping ofd ­ 1 3 1023, and the low-
est threshold we find for the onset of coherent motion
13 mA (at Qb ­ 0.81). For our parameters this corre
sponds to a nominal tune-shift parameter ofj0 , 0.04.
However, for theB factories under construction,d ,
1024, and at this lower damping the deleterious effects
these coherent phenomena are only expected to worse
particular, the onset threshold will be lower. Since theseB
factories have been designed assumingj0 , 0.0320.05,
care will need to be taken in the choice of operating p
rameters if they are not to be limited in luminosity by th
coherent phenomena described here [13].

In conclusion, our simulations show, for the first time
that the dynamics of flat beams allows for flip-flop
(F solutions) as well as period-n beam-size oscillations
(O solutions), in broad agreement with experiment
observations. The former are typically stronger and s
in at lower currents. In theB factories under construction
these could limit the luminosity, and therefore care nee
to be exercised in the choice of operating parameters.
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