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Zippering and Intermeshing: Novel Phase Diagrams for Interfaces and Films

Peter B. Weichman and Anoop Prasad
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 9112

(Received 10 July 1995)

New surface and layering phase diagrams are proposed based on generalized sine-Gordon m
with and without a substrate potential. In particular, we find that the preroughening transi
can be driven first order, explaining “zipper” features in heat capacity data for argon and kryp
on graphite substrates. For different parameters, we predict the existence of a novel varia
den Nijs’ disordered flat phase with spontaneously broken particle-hole symmetry and continuo
varying surface height with an accompanying intermeshing layering phase diagram. The restr
solid-on-solid model displays zippering for sufficiently large second neighbor coupling.

PACS numbers: 64.60.–i, 68.35.Rh, 68.55.Jk, 82.65.Dp
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Roughening and preroughening phenomena on b
crystal-vapor interfaces occur when entropic forces th
encourage a more disordered surface overcome energ
forces that prefer a flat surface. Roughening occu
via a Kosterlitz-Thouless transition [1] to a phase wi
logarithmically diverging mean square surface heig
difference,

Gsr 2 r0d ; 1
2 kfhsrd 2 hsr0dg2l

ø f4pKRsT dg21 lnsjr 2 r0jya0d , (1)

for large jr 2 r0j. Here hsrd is the integer height
over a 2D lattice labeled byr , KRsT d is the fully
renormalized tilt modulus, anda0 is of order the lattice
spacing. Preroughening is more subtle [2,3] and involv
a transition to adisordered flat(DOF) phase in which
the surface is macroscopically flatfGsr ! `d is finite],
but microscopically rough. The top layer has fraction
occupancyu, which at preroughening jumps fromuF ­
0 to uDOF ­

1
2 . The transition occurs when therma

fluctuations overcome the local (e.g., nearest neighb
interactions, but stronger, longer ranged (e.g., seco
neighbor) interactions exist to stabilize an overall fl
interface [2]. At higherT the interface finally roughens
completely.

Recent experiments involving the growth of thin film
on a substrate [4,5] have been interpreted as stro
evidence for preroughening behavior [6]. The key featu
is a sequence ofreentrantfirst order layering transitions
between integer-plus-one-half coverages lying above
usual low temperature layering transitions between inte
coverages (see Fig. 1). These are suggested to be the
film analog of the DOF phase. However, an unexplain
feature is a zigzagging line of transitions forming
“zipper” between the two (see Fig. 2 and Fig. 1 o
[6]). The first purpose of this Letter is to show tha
under certain conditions, the preroughening transiti
can become first order, leading to the zipper. T
second is to show that under different conditions d
Nijs’ uDOF phase [3], with continuously varying uppe
layer coverage,0 # usT d #

1
2 , can appear via a new
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mechanism involving spontaneous breaking of partic
hole symmetry. In thin films this leads to an as y
unobserved phenomenon ofintermeshingof the two sets
of layering lines (see Fig. 3).

Roughening and preroughening transitions are dom
nated by universal long wavelength critical fluctuation
In renormalization group language, the behavior is co
trolled by a fixed point (actually, a fixed line in this case
This allows a complete description of the large lengt
scale physics using a coarse grained Hamiltonian wh
depends only on a few effective parameters. For roug
ening phenomena the fixed point region may be char

FIG. 1. Preroughening and reentrant layering. Solid lines
dicate first order transitions between integersT , Tpr d or half-
integersT . Tprd film thicknesses (the first few lie off scale)
The phase diagram for the bulk interface,Dm ­ 0, is shown
along the top. The upper inset shows examples of physi
trajectories,fK0sT d, y0sT dg, overlayed on renormalization group
flows for k ­ u ; 0: (a) roughening; (b) preroughening fol-
lowed by roughening, as detailed in the main part of the figu
where we have usedKRsTpr d 2 py2 ­ 1. The lower inset
shows the evolution of the renormalized corrugation potenti
VRsh; Td, with T along trajectory (b) nearTpr .
© 1996 The American Physical Society
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FIG. 2. First order preroughening and zipperingsuR . 0d.
We take u0sT d ; 1025 and K0sT0d ­ 12. The unzipping
phenomenon is evident in the thinner films. The inset sho
the evolution of the renormalized corrugation potential withT.
The stable minima jump from integer to half integer atT0.

terized simply and completely by a sine-Gordon type
duced Hamiltonian,H SG ; HSGykBT [1]:

H SG ­
Z

d2rh 1
2 K0j,hsrdj2 1 V0fhsrdgj ,

V0fhg ­ 2y0 coss2phd 2 u0 coss4phd 1 Vsubfhg ,

(2)

where hsrd now represents a coarse grainedcontinu-
ous surface height field,K0sTd is the renormalized tilt
modulus,y0sT d represents the fundamental Fourier com
ponent of the renormalized atomic corrugation pote

FIG. 3. The uDOF phase and intermeshingsuR , 0d. We
use u0sT d ; 21025 and K0sT0d ­ 12. The inset shows the
evolution of the corrugation potential withT. The stable minima
now evolve continuously from integer to half integer in th
interval T 1

I , T , T 2
I .
s

-

-
-

tial, u0sTd the next harmonic, andVsubfhg is the ef-
fective substrate potential. In order to discuss z
pering and intermeshing we must keepu0 fi 0. All
higher harmonics, however, are strongly irrelevant [
and may be assumed to vanish in our effective th
ory. The substrate potential serves mainly to defi
an average film thickness,h0sDmd , Dm21ys11ad, with
a ­ 2 for a van der Waals attraction, diverging as th
deviation Dm ­ m0sT d 2 m of the chemical potential
from that of the bulk interface vanishes [5]. The form
(2) is valid only in the thick film limit whereVsubfhg
is extremely weak. The quadratic confining potent
Vsubfhg ø 1

2 k0sh 2 h0d2, fh 2 h0g ø h0, with a renor-
malized curvaturek0sT , Dmd , Dms21adys11ad, suffices
for thick films. Huse [7] has written down general func
tional recursion relations for any sufficiently weak po
tential V0fhg, and treated in detail the interplay betwee
roughening and layering.

To formalize what we have said so far we writ
down the renormalization group recursion relations for t
Hamiltonian (2):

ÙKsld ­ k2y2KL4 1 s4p4yKL4dy2 1 s64p4yKL4du2,

Ùysld ­ s2 2 pyKdy 1 s4p2yKL2dyu ,

Ùusld ­ s2 2 4pyKdu 2 sp2yKL2dy2,

Ùksld ­ 2k 2 k2yKL2,

(3)

whereL , pya is the (nonuniversal) momentum spac
cutoff due to the lattice. The flow parameterl is related to
the spatial rescaling factorb via b ­ el ; u ­ k ; 0 yield
the familiar Kosterlitz flow equations [1]. The recursio
relations are valid for smally, u, andk and we have the
initial conditionsKsl ­ 0d ­ K0sT d, etc.

The macroscopic thermodynamics is determined
the large l behavior of the flow trajectory for a given
initial condition. Thus, imagine integrating the flow
equations either until a fixed point is reached or un
the trajectory exits the region of validity of Eq. (3). I
the latter case, we stop integrating on some noncriti
matching surface bounding this region at some va
l ­ lpsK0, y0, u0, k0d of the flow parameter. In either
case, the final result is a Hamiltonian of the sam
form as (2), but with renormalized parametersKRsT d
and VRfhg ; 2yRsT d coss2phd 2 uRsTd coss4phd 1
1
2 kRsT d sh 2 h0d2. Whenever VRfhg is nonzero the
interface will be confined near its minimum. In ou
computations we shall, for simplicity, ignore the sma
residual fluctuations and take the equilibrium interfa
heightheq to be precisely at this minimum.

It is easy to confirm thaty ­ u ­ k ­ 0, but K
arbitrary, is a fixed line. Since any smallk0 grows
exponentially, the fixed line is reached only for a bu
interface. The fixed line is stable toy only if K , py2
and tou only if K , 2p. For thick filmsksld is always
very small and can be neglected in the first three recurs
relations, to thatyR, uR, andKR take theirk ­ 0 values,
while kR ø k0 exps2lpd.
2323
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Let us now consider the various possible behavio
Consider first the substrate free casek0 ­ 0. For K0 &

py2 , y, u ! 0 as l ! `, while the stiffnessKsld !

KRsT d, its fully renormalized value. The result is
purely Gaussian Hamiltonian andGsrd then takes the
form (1). In the presence of a substrate, the renormali
Hamiltonian is still Gaussian, but acquires a “mass”kR.
This cuts off the growth ofGsrd and confines the interface
to a region of width proportional to lns1yDmd abouth0.
SinceVRfhg is smooth and featureless the film will grow
continuously withh0.

For intermediate valuespy2 & K0 & 2p, u is still ir-
relevant, and may be ignored, but ify0 fi 0, ysld even-
tually begins to grow (see the upper inset to Fig. 1),
doesKsld, and we stop integrating at some fixed sm
y ­ yR (we takeyR ­ 0.6). The strengthening corruga
tion potential and increasing tilt modulus signal the on
of a flat phase. Notice that ify0 . 0 the minima occur
at integerh, while if y0 , 0 they occur at half integerh.
If we now includekR, the degeneracy is broken, and fo
the givenh0 a uniqueheq is usually selected. Only for
special values ofh0 do two neighboring minima becom
degenerate. Ash0 passes through one of these degen
acy pointsheq jumps discontinuously from one minimum
to the other, signifying a first order phase transition. F
y0 . 0 this transition is between approximately integ
film thicknesses, while fory0 , 0 it is between approxi-
mately half-integer film thicknesses. Ash0 increases an
infinite sequence of first order transitions occurs, signi
ing layer by layer film growth. AsK0 decreases toward
the roughening transition, these layering lines termin
in Ising critical pointsTc,n, beyond which the continu-
ous film growth detailed above occurs. TheTc,n, con-
verge to the bulk roughening temperatureTr from below
asTr 2 Tc,n , 1y ln2snd asn ! ` [7].

To understand preroughening, suppose that the effec
parametery0sT d changes sign,with y0sTpr d ­ 0. If this
happens forpy2 & K0sTpr d & 2p, the minima inVRfhg
then switch abruptly from integer to half integer, consiste
with the physics of preroughening atT ­ Tpr [3]. The
sign reversal is driven precisely by the entropy of sm
scale roughness discussed above. Fory0 ­ 0 the fixed
line is again stable, and we will haveusld ! 0 andKsld !

KRsTpr d, with a nonuniversalpy2 , KRsTprd , 2p. The
critical interface is thereforerough, but with a larger
renormalized stiffness than is generically possible.

On the preroughening line, the addition of the substr
potential leads to continuous film growth identical to th
in the rough regime. BelowTpr the integer layering lines
end in Ising critical pointsT 1

n , while aboveTpr the reentrant
half-integer layering lines begin and end in Ising critic
points T2

n and Tc,n. Following [7], one finds thatTpr 2

T 1
n , T2

n 2 Tpr , n2psTpr d with a nonuniversal exponen
psTpr d ­

1
2 s2 1 ad f2 2 pyKRsTpr dg, while Tr 2 Tc,n

behave precisely as before. This behavior is shown
Fig. 1, and in Fig. 3 of [6].
2324
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Finally, for even largerK0 sK0 * 2pd bothy andu are
relevant, so even ify0 ­ 0, u will grow to localize the
interface. If y0 is not precisely zero then bothu and y
will grow under renormalization and bothuR andyR will
be nonzero. We shall see thatinterferencebetween the
two has very strong effects on the phase diagrams.

We continue to assume thaty0sT0d ­ 0 for some
temperatureT0. For numerical convenience we chooselp

so that maxh103juslpdj, 2j yslpdjj ­ 1. The flow equations
then imply thatyRsT d ~ T 2 T0 for T nearT0. Suppose
first that uRsT0d . 0. The evolution of the corrugation
potential with T is then shown in the inset to Fig. 2
We see that at no point does the corrugation poten
vanish, and the interface is therefore always flat. A
yRsTd decreases, new minima develop ath ­ n 1

1
2 , and

precisely atT0 they become degenerate with those
h ­ n. ForT . T0, h ­ n 1

1
2 are the absolute minima

and there is afirst order phase transition from a flat to a
DOF phase. The layering phase diagram is even m
interesting. WhenyR is of the same order askR and
h0 ­ n 1

1
2 , the curvature due to the substrate potent

is sufficient to makeh ­ n 1
1
2 the absolute minimum

even whenyR . 0. This means that there is an interva
in temperature aroundT0 when integer and half-integer
coverages arealternately stable ash0 increases. One
finds that the integer layering lines end intriple points
T 1

t,n, out of which emerge two new first order lines whic
then join up to the two neighboring triple pointsT2

t,n
that begin the reentrant half-integer layering lines. Th
is the promised zippering behavior (Fig. 2). It can b
shown thatT0 2 T1

t,n, T 2
t,n 2 T0 , n2q as n ! ` with

q ­ 2 1 a (which simply reflects the fact thatkR ,
k0 , n2q scale identically in this first order regime)
As K0 decreases toward the preroughening regime
behavior converts to Fig. 1 by unzipping the zipper fro
the bottom. Thus, askRyuR increases the zigzagging
transitions break in the middle (bottom part of Fig. 2
and retract into the triple point, at which precise poin
yR ­ 16uR ­ kRy3p2, it is tricritical and then, for larger
kRyuR , critical.

Now suppose thatuRsT0d , 0. The evolution of the
corrugation potential is shown in the inset to Fig.
At a temperatureT I

1 , such thatyR ­ 4uR , the minima
split continuously into two via an Ising phase transitio
signifying a continuously varying surface heightn 6

usT d. Just aboveT 1
I one hasusT d , sT 2 T1

I d1y8, and
at T0 one hasusT0d ­

1
4 . AboveT0 the minima atn 1 u

andn 1 1 2 u move together until at a temperatureT2
I ,

such thatyR ­ 24uR , they merge in a second Ising
critical point and usT d ­

1
2 for T $ T 2

I . Just below
T 2

I one will have then1
2 2 usT d , sT2

I 2 T d1y8. The
intermediate phaseT1

I , T , T2
I is called theuDOF

phase. Such a phase is generated, even whenu ­ 0,
by particle-hole symmetry breaking corner interaction
which generate a term2y0

0 sins2phd in V0fhg [3]. Here
this phase is generated spontaneously by the interfere
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FIG. 4. Global surface phase diagram, along with vario
possible experimental trajectories (with 2, 3, and30 treated
in the first three figures), for the RSOS model on a squa
lattice computed using a four spin plaquette mean field theo
[6]. Strong evidence foruR . 0 is observed. The mean field
theory does not actually produce true roughening behavior,
the corresponding (thick grey) lines are determined partia
empirically and partially taken from [3]. All other features
however, are exhibited directly by the theory. The inset sho
schematically the behavior expected in the neighborhood oN
and N 0 if uR , 0, including the newuDOF phase. Since we
have not yet found a model withuR , 0, we do not fully
understand how things connect up. Reconstruction, and he
the Ising line, are absent for a triangular lattice substrate [
vastly increasing the size of the DOF phase and the ran
of first order preroughening, but leaving the remainder of t
phase diagram qualitatively unaffected.

between u and y when K is sufficiently large. As
K0 decreases toward the preroughening region, the t
Ising lines come closer together, merging to become
continuous preroughening line precisely whenu becomes
irrelevant (inset to Fig. 4).

In the presence ofkR, for T1
I & T & T2

I , there will
again be twice as many first order layering lines. How
ever, the fact that all minima are now exactly degenera
the transitions always occur whenh0 is either integer or
half integer. These lines must then end in Ising critic
points T1

I ,n and T2
I ,n, with T 1

I ,n 2 T1
I , T 2

I 2 T2
I ,n , n2q.

This is the intermeshing behavior shown in Fig. 3.
Which of the four possible behaviors we have discuss

is exhibited by a particular model or system depen
on the detailed interactions. Ify0 does not change
sign, then only a single set of layering transitions w
be observed. If it does change sign, andK0sT0d is
sufficiently large, either preroughening behavior will b
seen or, depending on the sign ofuR, zippering or
intermeshing will be seen. The experimental system
of argon and krypton on graphite [5] clearly show
behavior consistent with Fig. 2. We have investigat
via a plaquette mean field theory [6,8] the restricte
solid-on-solid (RSOS) model [2,3] of the interface fo
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both square and triangular (appropriate to experime
lattices. Parameters are nearest neighbor couplingK ­
J1ykBT , and second neighbor couplingL ­ J2ykBT . The
resulting global phase diagram (including reconstructi
which we have not addressed in this Letter), along w
various possible experimental trajectories, is shown
Fig. 4, and should be contrasted with Fig. 1 in [3]. The
is clear evidence for an interval (between the poi
N and N 0 in the figure) of first order preroughening
and henceu . 0, before the surface reconstructs. W
should caution, however, that the mean field theory m
overestimate the distance betweenN andN 0, and that the
first order nature of the transition is rather weak, a
this may be why the two points were indistinguishable
earlier studies [2,3]. Note, however, that reconstruct
and henceN 0 are absent on the triangular lattice, so t
validity of our theory, and the associated existence
zippering, is essentially beyond doubt in this case.

We have yet to find a RSOS type model withuR , 0.
However, the Ashkin-Teller model has the same si
Gordon representation and shows a preroughening
that forks into two Ising lines, precisely consistent w
u , 0 [9]. How to translate this observation into a
appropriate interface model is still under investigatio
We also plan simulations of realistic atomic systems to
how the effective parameters depend upon the interato
potentials and, with luck, to guide searches for appropr
new experimental systems.
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