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Low-Density Fluid Phase of Dipolar Hard Spheres
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Unexpectedly, recent computer simulation studies [Weis and Levesque, Phys. Rev. Lett.71, 2729
(1993); Leeuwen and Smit,ibid. 71, 3991 (1993)] failed to find a liquid phase for dipolar hard spheres.
We argue that the liquid was not observed because the dipolar spheres form long chains which inte
only weakly. To support this argument we derive a simple theory for noninteracting chains of dipol
spheres and show that it provides a reasonable description of the low-density fluid phase.

PACS numbers: 61.20.Gy, 64.30.+t, 65.50.+m
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The liquid state of matter is common and, apparen
well understood [1]. Substances varying from the no
gases to complex and highly nonspherical orga
molecules all exhibit a liquid phase coexisting with
vapor. This has been understood since the work of
der Waals over a century ago [1]. Essentially, in
liquid the interactions between the repulsive cores of
molecules (which increase the pressure) are greater
in the gas but so are the attractive interactions (wh
decrease the pressure). It is a balance between the
pulsive and attractive interactions that enables two fl
phases at different densities to have the same chem
potential and pressure and so to coexist. Reducing
temperature increases the effect of the attractive p
of the potential so it is tempting to assume that
sufficiently low temperature, if the intermolecular po
tential contains an attractive part, there will be a liqu
phase [2]. It may turn out that vapor-liquid coexisten
is metastable with respect to a fluid-solid transitio
but we would still expect a van der Waals loop
the pressure.

It was therefore something of a shock when compu
simulation failed to find a liquid phase for the dipola
hard-sphere potential [2–4]. Simulations at temperatu
well below the expected, and theoretically predicted [
critical temperature revealed no sign of coexisten
What the simulations did show was that the dipo
spheres formed long, quite straight, chains at these
temperatures [2,4,6]. It is tempting to speculate that
formation of chains is somehow responsible for the la
of a liquid phase. We examine this idea by showing th
due to the highly anisotropic nature of the interacti
between dipolar spheres, chain formation is energetic
favorable [7]. Then, we derive a theory for chains
dipolar spheres and show that once chains have form
there is little driving force for the formation of a liquid
phase. The results of our simple theory are in reasona
agreement with computer simulation and we are a
to extend our calculations to densities far below tho
studied by simulation. The chains dominate over a v
large density range at low temperatures and that in
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density range the thermodynamic functions, particula
the energy and chemical potential, vary very slow
with density.

The interaction potential for a pair of dipolar har
spheres is

u2s12d ­

8>>><>>>:
2

m2

4pe0r3
12

f2 cosu1 cosu2

2 sinu1 sinu2 cossf1 2 f2dg , r12 . s ,
` r12 , s ,

(1)

where u1 and u2 are the angles between the two dipo
vectors and the vectorr12 which joins the centers of the
two dipolar hard spheres.f1 and f2 are the azimuthal
angles aboutr12 [8]. s is the diameter of the spherica
hard core, m is the dipole moment, ande0 is the
permittivity of free space. The notation (12) represe
the relative coordinates of molecules 1 and 2 w
coordinates (1) and (2), respectively.

Of course, this is a long ranged potential; doubling t
distance between two dipolar hard spheres reduces the
ergy of interaction by a factor of 8 whereas the energy
creases by a factor of 64 for two Lennard-Jones molecu
[1]. However, the potential is highly anisotropic an
has two pronounced minima corresponding to nose-to-
configurations. The minima of the potential correspo
to the maximum of the angular function in (1) andr12 ­
s. At these minima the energy of a pair of molecul
is 22bpkBT , wherebp ­ m2y4pe0s3kBT ­ 1yTp de-
fines our energy scale.T is the temperature andkB is
Boltzmann’s constant. There are other local minima w
the pair of molecules side by side and antiparallel b
their energy is only2bpkBT . The low energy states ar
those for which the molecules are nose to tail, formi
chains of molecules. As the temperatureTp decreases
the weighting, by the Boltzmann factor, configurations
which the dipolar spheres are nose to tail will increa
exponentially. The dipolar spheres form long chains b
cause only then can they minimize their energy (there
also ringlike configurations but the qualitative effect
© 1996 The American Physical Society
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rings is the same as that of chains, so for the moment
ignore them).

There is an implicit assumption in all of this, that th
energy is essentially the sum ofN 2 1 pair terms; that
the molecules do not arrange themselves in some m
complicated way with an even lower energy. Howev
the formation of structures more ordered than sim
chains will be highly unfavorable at low densities. Als
and this is an important point, if we only consider near
neighbor interactions in a chain the configurational ene
will be a little above 22bpkBT but the energy of a
close-packed antiferromagnetic solid is only22.56bpkBT
[7] and Onsager’s lower bound on the energy [9]
24bpkBT . A fluid of noninteracting chains has an ener
almost as low as a close-packed lattice even when
count only the interaction of nearest neighbors.
observed by de Gennes and Pincus [7] the formation
chains almost saturates the interaction between dip
spheres. But if it is not possible to lower the energy o
fluid below that of essentially noninteracting chains the
is no driving force for the formation of a liquid phase.
the van der Waals picture of a fluid, two fluid phases c
coexist because the lower excluded volume entropy of
denser phase is counterbalanced by its lower energy
the energy saturates then the van der Waals mecha
for vapor-liquid coexistence no longer applies.

This saturation of the attractive part of the interacti
may be contrasted with the situation for molecules wh
interact via a spherically symmetric potential. The
molecules minimize their energy by clustering; ea
molecule will be surrounded by and interact equally w
around 12 other molecules. It is straightforward to s
that this clustering will lead to the formation of a liquid.

We now use our simple physical picture of the low te
perature gas of dipolar hard spheres to develop a statis
mechanical theory. If our ideas are correct then the p
dictions of this theory should agree with the pseudoex
computer simulation data [3,6]. Our starting point is t
pressurep, related to the logarithm of the grand partitio
function J, expressed as an activity expansion. The
tivity z is simply related to the chemical potentialmp by

z ­ qPsTd expsbmpd , (2)

whereb ­ 1ykBT andqP is the one molecule momentum
partition function. The activity expansion of the pressu
is exactly given in terms of an infinite sum of graph
where graphs are combinations of integrals and symm
numbers, see [1,10] for descriptions and definitions
graphs.

bpV ­ lnJ ­
Z

ds1dzs1d

1

Ω
sum of all connected graphs of
black circlesz, andf bonds

æ
,

(3)
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where V is the volume of the system andf ­
expf2bu2s12dg 2 1 is the Mayer f function. A
connected graph is a graph with at least two circles a
with the circles linked together by bonds so that eve
circle of the graph is connected to every other circle
a sequence of circles and bonds. Following the us
practice we have leftz expressed as a function of positio
and orientationzs1d; however, we do not consider a flui
in an external field soz is just a constant.

Our picture of a dilute gas of dipolar hard spheres
one of noninteracting chains of the dipolar spheres.
we also neglect all interactions within a chain except
nearest neighbor interactions then the chains are id
and their theoretical treatment is simple [11,12]. S
for noninteracting ideal chains of dipolar spheres,
simplifies to

bpV ­
Z

ds1dzs1d

1

Ω
sum of all linear chain graphs of

black circlesz, andf bonds

æ
, (4)

where a linear chain graph is composed ofz circles andf
bonds such that the onlyf bonds are between successi
z circles. A chain graph withn z circles factorizes into
n 2 1 pair integrals, each of which is22B2, divided
by a symmetry number: always equal to 2.B2 is the
second virial coefficient of the dipolar sphere fluid. The
summing all chain graphs gives

bp ­ z 2
z2B2

1 1 2zB2
. (5)

This is the correct result for the pressure of an ideal ga
ideal chains [13]. The number densityr is obtained from

r ­ z

µ
≠bp
≠z

∂
V ,T

­ z 2
2zB2 1 2z2B2

2

s1 1 2zB2d2
. (6)

Rearranging (6) gives a cubic equation forz in terms
of r and so enables us to obtain the chemical poten
and hence the free energy as a function ofr and
T . The configurational energyu can be obtained by
differentiating the free energy with respect to temperatu
B2 is a function (only) ofT ; we calculate it using the
expression of Joslin [14]. The average chain lengthl
is equal to the total number density divided by the to
number of chains. The pressure of ideal chains, o
kBT , is just this total number density of chains, therefo
l ­ rybp.

We now have the thermodynamic functions andl which
we may compare with the results of computer simu
tion. Caillol [3] performed simulations atTp ­ 0.18.
At the densities we are interested in,rp ­ rs3 # 0.1,
the pressure is too small to be measured in the sim
lation but at rp ­ 0.98 simulation givesbu ­ 28.82
and lnz ­ 26.39 which may be compared with our re
sults ofbu ­ 26.06 and lnz ­ 25.79. The simulations
2311
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of Levesque and Weis [6] are at the much lower te
perature ofTp ­ 0.0816. Their data provide a sever
test of our theory as at this very low temperatureB2 is
huge,B2s0.0816d ­ 25.39 3 106s3. This may be com-
pared with the second virial coefficient for hard spher
B2s`d ­ 2py3. Simulations forrp in the range 0.01–
0.1 givebu . 226 while in this range our theory gives
bu . 221.2. Both simulation and theory predict that th
energy is essentially constant over a decade in density
deed theory predicts thatbu changes only by about 0.0
(0.2%). The molecules form linear aggregates which
teract weakly; as such their behavior will be similar
that of a one-dimensional fluid. Just as in a typical on
dimensional fluid each molecule interacts only with tw
others, and so the interaction energy easily saturates [
Without an energy which decreases with density, there
no driving force for a vapor-liquid transition.

At sufficiently low densitybu, of course, tends to 0
but this occurs at much lower densities of around1028

(see Fig. 1). Remarkably, the energy is almost cons
over a density range of 4 decades. The chemical poten
(also shown in Fig. 1) is similarly almost constant ov
the same density range. So, we predict that due to
saturation of the interaction between the dipolar sphe
the energy and chemical potential are almost constant o
a very large density range. The average chain len
l does change in this density region, as can be s
in Fig. 2. At the densities simulated [6]l is greater
than the number of molecules used in the simulation
we are unable to compare the theoreticall with that of
simulation. Note thatl has increased to above 10
rp ­ 1025. Over the density range1025 –1021 where
the energy is constant the fraction of molecules which
part of a chain and are not an end sphere varies only fr
above 0.8 to essentially 1. With this in mind it is les
surprising that the energy is nearly constant.

FIG. 1. The configurational energyu divided by kBT (solid
curve) and the chemical potential lnszd (dashed curve), as
a function of the reduced densityrp at a temperature of
T p ­ 0.0816.
2312
-

s

in-

-

-

5].
is

nt
ial
r
he
es
er
th
en

o

t

re
m

FIG. 2. The mean chain lengthl as a function of the reduced
densityrp at a temperature ofT p ­ 0.0816.

In addition to treating the chains as ideal, we ha
neglected the possibility of rings forming [11,16]. Chain
of dipolar spheres are not very flexible and this certain
discourages ring formation; few rings were seen
computer simulation. However, at very low densitie
ring formation is favored because the entropy cost
forming long chains is high [16]. It is difficult to asses
the number of rings that will form but if significant
numbers do form then the energy will saturate mo
quickly than we predict using our theory, which neglec
ring formation.

In conclusion, because the interaction between dipo
spheres is highly anisotropic the formation of chains
highly favored. These chains are highly stable and there
little energy to be gained by their aggregation, and the
fore the driving force for the formation of a liquid phas
is much weaker than that found for spherically symmet
potentials. The behavior of dipolar spheres is similar
that of associating spheres [17], in particular a sphere w
two sites, each mediating a highly anisotropic and sh
ranged interaction (typically. 0.1s). Remarkably, the
enormous difference in interaction range between the
sociated sphere [17] and the dipolar sphere seems to m
little difference at low densities. The behavior show
in Fig. 1 is general to systems which form long, linea
chains; see Ref. [18] for a discussion of such systems.
is interesting to note that although a sphere with two si
does not show vapor-liquid coexistence, a sphere w
four (or three) sites does [19]. With more than two site
the chains can branch and cross-link; this encourages c
tering and the formation of a liquid phase. So, if we ca
modify the potential so that instead of two minima the
are three or more we expect a liquid phase to appear;
is borne out by the computer simulations of McGroth
and Jackson [20].
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