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Squeezed Phonon States: Modulating Quantum Fluctuations of Atomic Displacement
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We study squeezed quantum states of phonons, which allow the possibility of modulating the
quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent
phonon states. We calculate the corresponding expectation values and fluctuations of both the
atomic displacement and lattice amplitude operators, and also investigate the possibility of generating
squeezed phonon states using a three-phonon parametric amplification process based on phonon-phono
interactions. Furthermore, we also propose a detection scheme based on reflectivity measurements.

PACS numbers: 05.40.+j, 42.50.Dv, 42.50.Lc, 63.20.–e
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Photon squeezed states have attracted much atten
during the past decade [1]. These states are importan
cause they can achieve lower quantum noise than the z
point fluctuations of the vacuum or coherent states. T
they provide a way of manipulating quantum fluctuatio
and have a promising future in different applications ran
ing from optical communications to gravitational wav
detection [1]. Indeed, squeezed states are currently
ing explored in a variety of non-quantum-optics system
including classical squeezed states [2]. Here we study
properties ofphononsqueezed states and explore the p
sibility of generating these states through phonon-phon
interactions. After briefly presenting the quantum m
chanical description of various kinds of phonon stat
we study a simple model for generating phonon squee
states, in which analytical results can be obtained [3]. W
also propose a scheme for detecting this squeezing eff

In most macroscopic situations, a classical descript
is adequate. However, the quantum fluctuations o
phonon system can be dominant at low enough temp
tures. Indeed, a recent study shows that quantum fl
tuations in the atomic positions can influence observa
quantities (e.g., the Raman line shape) [4] even when t
peratures are not very low.

An experimentally observable quantity for
phonon system is the real part of the Fourier tran
form of the atomic displacement: Refuasq dg ­P

l

p
h̄y8mvql hUl

qasbql 1 b
y
2qld 1 Ulp

qa sb2ql 1 b
y
qldj

[5]. For simplicity, hereafter we will drop the branc
subscript l, assume thatUqa is real, and define a
q-mode dimensionless lattice amplitude operat
us6q d ­ bq 1 by

2q 1 b2q 1 by
q . This operator con-

tains essential information on the lattice dynamic
including quantum fluctuations. It is the phonon anal
of the electric field in the photon case.

Phonon vacuum and number states.—When no phonon
is excited, the crystal is in the phonon vacuum statej0l.
The eigenstates of the harmonic phonon Hamiltonian
number states which satisfybqjnql ­

p
nq jnq 2 1l. The

phonon number and the phase of atomic vibrations
conjugate variables. Thus, due to the uncertainty pr
ciple, the phase is arbitrary when the phonon numbe
0031-9007y96y76(13)y2294(4)$10.00
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certain, as is the case with any number statejnql. There-
fore, the expectation values of the atomic displacem
knqjuiajnql andq-mode lattice amplitudeknqjus6q djnql
vanish due to the randomness in the phase of the ato
displacements.

Phonon coherent states.—A single-modesq d phonon
coherent state is an eigenstate of a phonon annihilation
erator:bqjbql ­ bqjbql [6]. It can also be generated b
applying a phonon displacement operatorDqsbqd to the
phonon vacuum statejbql ­ Dqsbqd j0l ­ expsbqby

q 2

bp
q bqdj0l ­ exps2jbqj2y2d

P`
nq­0 b

nq
q jnqly

p
nq! . Thus

it can be seen that a phonon coherent state is a phase
herent superposition of number states. Moreover, coh
ent states are a set of minimum-uncertainty states wh
are as noiseless as the vacuum state [7]. Coherent s
are also the quantum states that best describe the clas
harmonic oscillators [8].

Phonon squeezed states.—In order to reduce quantum
noise to a level below the zero-point fluctuation leve
we need to consider phonon squeezed states. Quadra
squeezed states are generalized coherent states [9].
“quadrature” refers to the dimensionless coordinate a
momentum. Compared to coherent states, squeezed
can achieve smaller variances for one of the quadratu
during certain time intervals and are therefore helpful f
decreasing quantum noise.

A single-mode quadrature phonon squeezed state is g
erated from a vacuum state asjaq, jl ­ DqsaqdSqsjdj0l;
a two-mode quadrature phonon squeezed state is gene
as jaq1 , aq2 , jl ­ Dq1 saq1 dDq2 saq2 dSq1,q2 sjdj0l. Here
Dqsaqd is the coherent state displacement operator w
aq ­ jaqjeif, Sqsjd ­ expsjpb2

qy2 2 jby 2
q y2d and

Sq1,q2 sjd ­ expsjpbq1bq2 2 jby
q1

by
q2

d are the single- and
two-mode squeezing operator [10], andj ­ reiu is the
complex squeezing factor withr $ 0 and 0 # u , 2p.
The two-mode phonon quadrature operators have the f
Xsq, 2q d ­ sbq 1 by

q 1 b2q 1 by
2qdy23y2 ­ 223y2 3

us6q d andPsq, 2q d ­ sbq 2 by
q 1 b2q 2 by

2qdy23y2i.
We have considered two cases where squeezed s

were involved in modes6q. In the first case, the system
is in a two-mode s6q d squeezed statejaq, a2q, jl,
© 1996 The American Physical Society
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sj ­ reiud, with fluctuations kfDus6q dg2lsq ­
2se22r cos2 u

2 1 e2r sin2 u

2 d. In the second case, th
system is in a single-mode squeezed statejaq, jl
saq ­ jaqjeifd in the first mode and an arbitrary cohere
statejb2ql in the second mode. The fluctuation is no
1 1 e22r cos2sf 1

u

2 d 1 e2r sin2sf 1
u

2 d. In both of
these cases,kfDus6q dg2lsq can be smaller than in cohere
states.

Phonon parametric process.—Now we propose a
scheme to generate phonon quadrature squeezed s
[11,12]. This scheme is based on a “phonon” pa
metric amplification process (e.g., the decaying proc
LO phonon ! two LA phonons, where LO refers to
longitudinal optical and LA to longitudinal acoustic
which in turn is based on three-phonon interactio
Typically, three-phonon interactions are the domina
anharmonic processes in a phonon system and the lo
order perturbation to the harmonic Hamiltonian. We w
neglect all the higher order interactions because they
generally much weaker than the third-order ones.
all parametric processes, the pump wave (of phon
in this case) must be very strong because the gen
physical processes inside parametric amplifiers are ge
ally nonlinear and weak. This pumping process can
realized by using two lasers to illuminate a crystal. W
appropriate laser frequencies and directions, cohe
LO phonons of the pump mode at the Brillouin zo
center can be generated through, for example, stimul
Raman scattering (provided that the pump mode is Ram
active), as discussed, e.g., in Refs. [13,14].

The Hamiltonian for the whole process initiated by t
Raman scattering is (see Fig. 1)

Hparam ­ H0 1 HRaman 1 Hanh , (1)

H0 ­ h̄vk1 a
y
k1

ak1 1 h̄vk2a
y
k2

ak2 1
X
q

h̄vqby
q bq ,

HRaman ­ hak1 a
y
k2

by
qp

1 hpa
y
k1

ak2 bqp ,

Hanh ­ lqsqi
bqp

by
qs

by
qi

1 lp
qsqi

by
qp

bqs
bqi

1
X
q0q00

slq0q00bqp b
y
q0b

y
q00 1 lp

q0q00by
qp

bq0 bq00d .

Here a sbd refer to photon (phonon) operators. Th
higher (lower) energy incident photon mode is labeled
k1 sk2d. Notice that the lower energy photon mode
generally called the Stokes mode in the context of Ram
scattering. The sums overq0 and q00 in Hanh represent
decay channels other than the special one with acou
signal and idler modes.

We now consider two mean field averages in ord
to simplify an otherwise analytically intractable problem
The first mean field is over the photons. The photo
in the incident modesk1 and k2 (often denoted by
“laser” and “Stokes” light) originate from two lasers. A
long as these two incident laser modes are not stron
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FIG. 1. A schematic diagram of a three-phonon paramet
process. Here (a) refers to a stimulated Raman scatte
and (b) to a three-phonon anharmonic scattering process.
subscriptk1 sk2d refers to the higher (lower) energy inciden
coherent photons. The arrows in the diagram illustrate t
directions of the photon and phonon momentum vectors.
typical process is as follows: A photon in modek1 interacts
with the phonon system and emits one LO phonon in the pu
mode of frequencyvp , while the photon itself is scattered
into modek2; the generated pump mode LO phonon procee
in the crystal, interacts with the lower energy phonon mod
through the three-phonon interaction, and eventually splits in
two LA phonons in modess ands0. The latter can be squeeze
for appropriate initial states. Notice that the pump mode L
phonons have an almost-zero wave vector, so that the two lo
energy LA phonon modes have nearly opposite wave vect
6qs. Also notice that this figure is not to scale. For the sa
of clarity, we have increased the angle between the lines a
drawn a longer line for the pump-mode phonon.

perturbed by the Raman scattering process, we can t
both of these incoming photon states as coherent sta
jak1 e2ivk1 tl and jak2 e2ivk2 tl, and perform a mean field
average over them. The second mean field average is o
the LO pump-mode phonons. Since phonons produc
by coherent or stimulated Raman scattering are initia
in coherent states, we denote this pump-mode phon
coherent state asjb0stdl, with kb0stdjbqp

jb0stdl ­ b0std.
Since these LO phonons are in coherent states, the res
from the average over the pump-mode phonons arec-
numbers with a well-behaved time dependence. No
we drop all thec-number terms because they will no
affect our results. In addition, we will also drop all th
phonon modes involved in the decay channels other th
the special one consisting of the signal modes, consider
them only weakly coupled to the pump mode; i.e., w
assumelq0q00 ø lqsqi

. The Hamiltonian now becomes

H 0
param ­ h̄vqs b

y
qs

bqs 1 h̄v2qs b
y
2qs

b2qs

1 lqs ,2qs
b0std by

qs
by

2qs

1 lp
qs ,2qs

bp
0 std bqs b2qs , (2)

whereb0std is the coherent amplitude of the pump-mod
phonons. We useH0 1 HRaman to determineb0std, and
then substitute it back intoHparam to obtainH 0

param. Here
we have implicitly assumed that the Raman scatteri
process is stronger than the anharmonic scattering.
cording to our previous discussion [10], the two-mod
LA phonon system will evolve into a two-mode squeeze
statejaqs , a2qs , jstdl from an initial coherent or vacuum
2295
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state, with a squeezing factor of

jstd ­
i
h̄

Z t

2`

lqs ,2qs
b0stde2ivqs tdt , (3)

which is valid in the short-time limit. This condition can
be relaxed if the incident photons are in an ultrashort pu
with duration less than the optical phonon period.

In summary, we have just considered generating tw
mode LA phonon squeezed statesjaqs , a2qs , jstdl by
using the three-phonon anharmonic interaction [15]. T
higher energy LO phonon mode, which is called th
“pump” mode, is driven into a coherent state throug
stimulated Raman scattering. This mode in turn is used
a pump in the parametric amplification process involvin
itself and the two lower energy LA phonon modess6qsd,
the signal and the idler. Both of these modes can h
be called “signal” because the “idler” mode is not real
“idle”; indeed, it is actively involved in the squeezing
process. In conclusion, we have shown that the L
phonons in the two signal modess6qsd are in a two-mode
squeezed state if (i) the LO pump mode is in a cohere
state and (ii) we can neglect the other decay channels.

Detection schemes.—It is possible to directly detect a
single-mode phonon squeezed state with phonon coun
[16] such as superconducting tunnel junction bolomete
and vibronic detectors. The signature of a single-mo
squeezed state is a sub-Poissonian phonon number d
bution in that mode. However, these phonon counters
either wide band or have low efficiency. Therefore, dire
detection might not be the best method to detect sque
ing effect.

Phase-sensitive schemes such as homodyne and
erodyne detectors are most often used to detect pho
squeezed states because of their ability to lock phase w
the electric field of the measured state [9]. There appe
to be no available phase-sensitive detection method
phonons. A promising candidate might be measuring t
intensity of a reflected probe light [14]. This method ha
already been used to detect phonon amplitudes, since
reflectivity is linearly related to the atomic displacemen
in a crystal. The value of the lattice amplitude oper
tor can be extracted by making a Fourier analysis on
sample reflectivity. If squeezing should happen, its effe
will be contained in the Fourier components of the inte
sity of the reflected light. In this manner the informatio
on the squeezing effect in the phonons is also carried
the reflected light in the form of squeezing of the photo
intensity. We can then use a standard optical detect
method to determine whether the related light is squee
or not. One shortcoming of this method is that it is n
direct. In the measurement there can be noise added
the signal, such as the intensity fluctuation of the origin
probe light, the efficiency for the reflected light to pick u
the signals in the phonons, etc. Needless to say, furt
research needs to be done on how to realize this pha
sensitive detection scheme, and we hope that our ini
2296
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proposals stimulate further theoretical and experimen
work on this problem.

Phonon squeezing depends on the absolute valur
and also on the phaseu of the squeezing factorjstd ­

reiu . More explicitly, kfDus6q dg2lsq ­ 2se22r cos2 u

2 1

e2r sin2 u

2 d. Only whenu is close to0 is noise suppressed
in the lattice amplitude operator. This means that, in ord
to suppress the noise, the squeezing factorjstd has to have
a dominant positive real part so that cosu . tanhr. The
squeezing factor obtained from the three-phonon proces
jstd ­

i
h̄

Rt
0 l astd eisvs1vidtdt, where the real number

l is the strength of the interaction anda is the amplitude
of the phonon coherent state in the pump mode. From
expression forjstd, we can see that the squeezing effe
only appears during certain time intervals. Ifastd does
not depend on time or has a periodic dependence on ti
squeezing will be periodic in time, which makes phas
sensitive detection easier to achieve.

To make the above schemes work, some noise pr
lems have to be overcome. First, any attempt to gene
or detect squeezed states should be at low temperatur
avoid thermal noise in the crystal. For instance, the ex
tation energy of a10 THz optical phonon corresponds t
a temperature of about100 K. Therefore, the experimen
might have to be carried out at a temperature well bel
100 K, such as10 K or lower. Second, the fluctuation
in the laser intensity and in the interaction between t
laser and the crystal has to be very small, so that they w
not suppress the noise reduction process in the squee
effect. Indeed, one of the possible ways to reduce
noise coming from the laser beam is to use a beam
squeezed photons. Finally, the incoherence in the pro
dure itself has to be minimized. For example, the fin
lifetime of pump-mode phonons does not favor the ge
eration of squeezed states because it gives rise to an
ditional noise in the intensity of the mode. Therefore, w
need long lifetime LO phonons, which can be realized
for instance, materials with weak anharmonic interactio
and low concentration of isotopic defects (e.g., diamon

In conclusion, we have investigated the dynami
and quantum fluctuation properties of phonon quad
ture squeezed states. In particular, we calculate
experimentally observable time evolution and fluctu
tion of the lattice amplitude operatorus6q d, and show
that kus6q dlsq is a sinusoidal function of time, while
kfDus6q dg2lsq is periodically smaller than the vacuum
and coherent state value2. In other words, phonon
squeezed states are periodically quieter than the vacu
state. We have discussed one particular approach to g
erate phonon squeezed states. This approach is b
on a three-phonon process where the higher energy
tical phonon mode is coherently pumped. We show th
the two lower energy acoustic phonon modes can be
a two-mode phonon quadrature squeezed state given
propriate initial conditions. We achieve this by dealin
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separately with (i) the optical excitation of the pum
mode optical phonons and (ii) the anharmonic scatteri
of the pump-mode phonons into the lower energy acous
phonons. We have also briefly analyzed a potential det
tion method of phonon squeezed states. Experiments
quantum optics indicate that phase-sensitive methods
such as homodyne detection—are the best in detect
photon squeezed states. Therefore, we have propose
detection scheme based on a reflected probe light and
ordinary phase-sensitive optical detector.

As in the photon case [1], the experimental realizatio
of phonon squeezed states might require years of wo
after its initial proposal. We hope that our effort will lead
to more theoretical and experimental explorations in t
area of phonon quantum noise modulation.
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