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Squeezed Phonon States: Modulating Quantum Fluctuations of Atomic Displacements
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We study squeezed quantum states of phonons, which allow the possibility of modulating the
qguantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent
phonon states. We calculate the corresponding expectation values and fluctuations of both the
atomic displacement and lattice amplitude operators, and also investigate the possibility of generating
squeezed phonon states using a three-phonon parametric amplification process based on phonon-phonon
interactions. Furthermore, we also propose a detection scheme based on reflectivity measurements.

PACS numbers: 05.40.+j, 42.50.Dv, 42.50.Lc, 63.20.—e

Photon squeezed states have attracted much attentioertain, as is the case with any number stajg. There-
during the past decade [1]. These states are important bésre, the expectation values of the atomic displacement
cause they can achieve lower quantum noise than the zerQzq|u;,|nq) andq-mode lattice amplitudéng|u(*+q)|nq)
point fluctuations of the vacuum or coherent states. Thusanish due to the randomness in the phase of the atomic
they provide a way of manipulating quantum fluctuationsdisplacements.
and have a promising future in different applications rang- Phonon coherent states:A single-mode(q) phonon
ing from optical communications to gravitational wave coherent state is an eigenstate of a phonon annihilation op-
detection [1]. Indeed, squeezed states are currently berator:bq|B¢) = BqlBq) [6]. It can also be generated by
ing explored in a variety of non-quantum-optics systemsapplying a phonon displacement operai#y(3,) to the
including classical squeezed states [2]. Here we study thghonon vacuum statgd,) = Dq(Bq) 10) = exp(,qu;f -

properties ophononsqueezed states and explore the pos- *bq)|0> _ eXp(—I,BqIZ/Z) 5 nq |nq>/W_ Thus

_sibility Qf generating these states through phonon-phono qcan be seen that a phono;ngfgrent state is a phase co-
interactions. After briefly presenting the quantum me-

chanical description of various kinds of phonon statesher(_:‘nt superposition of number states. Moreover, coher-

we studv a simple model for generating phonon s ueezee t states are a set of minimum-uncertainty states which
y P 9 9p 9 e as noiseless as the vacuum state [7]. Coherent states

Z’:z})es,rcl)n cﬁt?;ﬁ;ﬁg%;ﬁ;gtﬁn t?]?sosbtﬁgfgn[:a]éf;/g re also the quantum states that best describe the classical
brop 9 9 9 )armonic oscillators [8].

In most macr ic situation lassical ription
0St Macroscopic situations, a classical descriptio Phonon squeezed statesIn order to reduce quantum

is adequate. However, the quantum fluctuations of foise to a level below the zero-point fluctuation level,

phonon system can be dominant at low enough MPeIge need to consider phonon squeezed states. Quadrature

tures. Ir_1deed, a recent S.u.de ShOW.S that quantum ﬂuCs:queezed states are generalized coherent states [9]. Here
tuations in the atomic positions can influence observablg

uantities (e.g., the Raman line shape) [4] even when te quadrature” refers to the dimensionless coordinate and
g 9. b Mhomentum. Compared to coherent states, squeezed ones
peratures are not very low.

. . can achieve smaller variances for one of the quadratures
An experimentally observable quantity for a

phonon system is the real part of the Fourier trans_durlng certain time intervals and are therefore helpful for

) . ) 7" “decreasing quantum noise.
form _of the atomic displacement: Rei(q)] = A single-mode quadrature phonon squeezed state is gen-

2aV/8mwgr{Ugqe (bgr + AP Uga (b-qx + be)}  erated from a vacuum state g, £) = Dq(aq)Sq(£)10);

[5]. For simplicity, hereafter we will drop the branch g ywo-mode quadrature phonon squeezed state is generated

subscript A, assume thatUy, is real, and define a as |ag,, ag, &) = Dy, (aq,)Dq,(aq,)Sq,.0,(6)]0).  Here

q-mode dlmensT|onIess Iattu;e amplitude operator:, (,  is the coherent state displacement operator with

u(_tq) =bq + by + b g + by. This operator con- g = lagle’®,  Sq(&) = exp(&¥b2/2 — £b1%/2) and

tains essential information on the lattice dynamics, - % " ‘!r a -’

including quantum fluctuations. It is the phonon analogs‘ll’qz(f) = exp(¢ bq b, — &bg,bg,) are the smg!e- and

of the electric field in the photon case. two-mode squeezing operator [10], agd= re'’ is the
Phonon vacuum and number statesiVhen no phonon €omplex squeezing factor with = 0 and0 = 6 < 2.

is excited, the crystal is in the phonon vacuum stéje The two-mode phonon quadrature operators have the form

The eigenstates of the harmonic phonon Hamiltonian ar& (@, —q) = (bq + bl + b—q + bt )/23% = 2732 x

number states which satisby |nq) = /7iq Inq — 1). The u(xq)andP(q,—q) = (bq — b(—}r + by — biq)/23/2i.

phonon number and the phase of atomic vibrations are We have considered two cases where squeezed states

conjugate variables. Thus, due to the uncertainty prinwere involved in modestq. In the first case, the system

ciple, the phase is arbitrary when the phonon number iss in a two-mode(+q) squeezed statéaq, a g, &),
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(& = re'?), with fluctuations (Au(xq)P)q = coherent photon
2e > cod S + ¢ si?Y). In the second case, the loka>, g ,

. . . optical phonon
system is in a single-mode squeezed sthig, ¢) T =F- K =0
(@q = lagle’®) in the first mode and an arbitrary coherent
state|8_4) in the second mode. The fluctuation is now

1 + e 2 co(p + 3) + e sirt(¢p + 3). In both of coherent photon
these caseg,Au(+q)]*)sq can be smaller than in coherent o>, e,

states. . FIG. 1. A schematic diagram of a three-phonon parametric
Phonon parametric process:Now we propose a process. Here (a) refers to a stimulated Raman scattering
scheme to generate phonon quadrature squeezed staded (b) to a three-phonon anharmonic scattering process. The

[11,12]. This scheme is based on a “phonon” parasubscriptk, (k,) refers to the higher (lower) energy incident

: P ; oherent photons. The arrows in the diagram illustrate the
metric amplification process (e.g., the decaying proces%irections pof the photon and phonon momgntum vectors. A

LO phonon— two LA phonons, where LO refers t0 ypical process is as follows: A photon in motte interacts
longitudinal optical and LA to longitudinal acoustic), with the phonon system and emits one LO phonon in the pump
which in turn is based on three-phonon interactionsmode of frequencyw,, while the photon itself is scattered

Typically, three-phonon interactions are the dominaninto modek,; the generated pump mode LO phonon proceeds
tthe crystal, interacts with the lower energy phonon modes

anharmonic Processes in a phon_on sys.tem .and the IOV.Vét%rough the three-phonon interaction, and eventually splits into
order perturbation to the harmonic Hamiltonian. We will 5 | A phonons in modes ands’. The latter can be squeezed

neglect all the higher order interactions because they amer appropriate initial states. Notice that the pump mode LO
generally much weaker than the third-order ones. Fophonons have an almost-zero wave vector, so that the two lower

all parametric processes, the pump wave (of phonongnergy LA phonon modes have nearly opposite wave vectors

; ; +q,. Also notice that this figure is not to scale. For the sake
in this case) must be very strong because the generfy clarity, we have increased the angle between the lines and

physical processes inside parametric amplifiers are genefirawn a longer line for the pump-mode phonon.
ally nonlinear and weak. This pumping process can be

realized by using two lasers to illuminate a crystal. With

appropriate laser frequencies and directions, coherer{i;[e;aurbfeg1 by the Raman zc?tterlr}[gtprocess, r;"’e c?n ttrf[eat
LO phonons of the pump mode at the Brillouin zonePOth ©f thése incoming photon states as conerent states

—lwg, t —lwk, t 7
center can be generated through, for example, stimulatddk: ¢ ') andlag, e~**="), and perform a mean field

Raman scattering (provided that the pump mode is Ramaaerage over them. The second mean field average is over

active), as discussed, e.g., in Refs. [13,14]. the LO pump-mode phonons. Since phonons produced

The Hamiltonian for the whole process initiated by the.by cor?erentt otr tstlmulateéj Ratma}[ﬂscattermg adre m;;ually
Raman scattering is (see Fig. 1) in coherent states, we denote this pump-mode phonon

coherent state ag(1)), with (Bo(1)bq,|Bo(1)) = Bo(?).

acoustic phonon
Zis s s

acoustic phonon
Gy = -7 and 0y =

Hparam = Ho + Hraman + Hanh » (1) Since these LO phonons are in coherent states, the results
from the average over the pump-mode phonons care
Hy = hwk]alt]ak] + ﬁwkzaizak2 + Zhwqbgbq, numbers with a well-behaved time dependence. Now
q we drop all thec-number terms because they will not
HRaman = naklalzb:{p + n*aﬁlakzbqw affect our results. In addition, we will also drop all the

phonon modes involved in the decay channels other than
the special one consisting of the signal modes, considering
them only weakly coupled to the pump mode; i.e., we
assumelgq <K Aqq,- The Hamiltonian now becomes

Hanh = Aqsqibqpb(l-sb(;' + A;:qib(-]rp bqsbq'
Pt s
+ D (Aqqrbg, bybgr + Nygbd byby) .
q/qH

Here a (b) refer to photon (phonon) operators. The HI’,Mlm = hwqu;fsbqf + ﬁw_qsbiqxb_qj
higher (lower) energy incident photon mode is labeled by Y Bo(t) b bt
k; (k»). Notice that the lower energy photon mode is 4-=qs POY .7,
generally called the Stokes mode in the context of Raman + /\f;ﬁ,qs Bo(t) bg,b—q, , (2
scattering. The sums ovef andq” in H,,, represent
decay channels other than the special one with acoustighere 8y(z) is the coherent amplitude of the pump-mode
signal and idler modes. phonons. We usély + Hguman tO determineBy(z), and

We now consider two mean field averages in ordethen substitute it back int&,ram t0 obtainHI’,aram. Here
to simplify an otherwise analytically intractable problem.we have implicitly assumed that the Raman scattering
The first mean field is over the photons. The photonsprocess is stronger than the anharmonic scattering. Ac-
in the incident modesk; and k, (often denoted by cording to our previous discussion [10], the two-mode
“laser” and “Stokes” light) originate from two lasers. As LA phonon system will evolve into a two-mode squeezed
long as these two incident laser modes are not stronglgtate|ag,, a4, £(¢)) from an initial coherent or vacuum
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state, with a squeezing factor of proposals stimulate further theoretical and experimental
P _ work on this problem.
&) = —f /\qm,qsﬁo(r)ez’“’qﬁdr, 3 Phonon squeezing depends on the absolute value
hJ—e and also on the phase of the squeezing facto#(r) =

which is valid in the short-time limit. This condition can ,.i¢ More explicitly, (Au(=q)P)sq = 2(e™> Coszg +

be relaxed if the incident photons are in an ultrashort pulse,, _. » o . . .
with duration less than the optical phonon period. ¢”’ sir? 7). Only whend is close tod is noise suppressed

In summary, we have just considered generating twoln the lattice amplitude operator. This means that, in order
mode LA phonon squeezed staths,,a g, £(1)) by to suppress the noise, the squeezing faétor has to have

using the three-phonon anharmonic interaction [15]. Thé dominant positive real part so that 6os tanhr. The
higher energy LO phonon mode, which is called theSAueezing factorobtqmed from the three-phonon process is
“pump” mode, is driven into a coherent state through&(t) = % [o A a(r) e’ @)7dr, where the real number
stimulated Raman scattering. This mode in turn is used a4 is the strength of the interaction aadis the amplitude
a pump in the parametric amplification process involvingof the phonon coherent state in the pump mode. From this
itself and the two lower energy LA phonon modesq,),  €xpression for(s), we can see that the squeezing effect
the signal and the idler. Both of these modes can herénly appears during certain time intervals. dfr) does
be called “signal” because the “idler” mode is not really not depend on time or has a periodic dependence on time,
“idle”; indeed, it is actively involved in the squeezing squeezing will be periodic in time, which makes phase-
process. In conclusion, we have shown that the LAsensitive detection easier to achieve.
phonons in the two signal modés q;) are in a two-mode To make the above schemes work, some noise prob-
squeezed state if (i) the LO pump mode is in a cohererfems have to be overcome. First, any attempt to generate
state and (ii) we can neglect the other decay channels. Or detect squeezed states should be at low temperatures to
Detection schemes-It is possible to directly detect a avoid thermal noise in the crystal. For instance, the exci-
single-mode phonon squeezed state with phonon countet@tion energy of a0 THz optical phonon corresponds to
[16] such as superconducting tunnel junction bolometerd temperature of aboud0 K. Therefore, the experiment
and vibronic detectors. The signature of a single-modénight have to be carried out at a temperature well below
squeezed state is a sub-Poissonian phonon number distt0 K, such asl0 K or lower. Second, the fluctuations
bution in that mode. However, these phonon counters ar@ the laser intensity and in the interaction between the
either wide band or have low efficiency. Therefore, directiaser and the crystal has to be very small, so that they will
detection might not be the best method to detect squee#ot suppress the noise reduction process in the squeezing
ing effect. effect. Indeed, one of the possible ways to reduce the
Phase-sensitive schemes such as homodyne and hggise coming from the laser beam is to use a beam of
erodyne detectors are most often used to detect photdiflueezed photons. Finally, the incoherence in the proce-
squeezed states because of their ability to lock phase witure itself has to be minimized. For example, the finite
the electric field of the measured state [9]. There appeafdetime of pump-mode phonons does not favor the gen-
to be no available phase-sensitive detection method fagration of squeezed states because it gives rise to an ad-
phonons. A promising candidate might be measuring thélitional noise in the intensity of the mode. Therefore, we
intensity of a reflected probe light [14]. This method hasheed long lifetime LO phonons, which can be realized in,
already been used to detect phonon amplitudes, since ther instance, materials with weak anharmonic interactions
reflectivity is linearly related to the atomic displacementsand low concentration of isotopic defects (e.g., diamond).
in a crystal. The value of the lattice amplitude opera- In conclusion, we have investigated the dynamics
tor can be extracted by making a Fourier analysis on th@nd quantum fluctuation properties of phonon quadra-
sample reflectivity. If squeezing should happen, its effecture squeezed states. In particular, we calculate the
will be contained in the Fourier components of the inten-experimentally observable time evolution and fluctua-
sity of the reflected light. In this manner the informationtion of the lattice amplitude operatar(+q), and show
on the squeezing effect in the phonons is also carried bthat (u(£q))sq is a sinusoidal function of time, while
the reflected light in the form of squeezing of the photorK[Au(+q)T?)s, is periodically smaller than the vacuum
intensity. We can then use a standard optical detectioand coherent state value. In other words, phonon
method to determine whether the related light is squeezeshjueezed states are periodically quieter than the vacuum
or not. One shortcoming of this method is that it is notstate. We have discussed one particular approach to gen-
direct. In the measurement there can be noise added ingrate phonon squeezed states. This approach is based
the signal, such as the intensity fluctuation of the originabn a three-phonon process where the higher energy op-
probe light, the efficiency for the reflected light to pick up tical phonon mode is coherently pumped. We show that
the signals in the phonons, etc. Needless to say, furthéhe two lower energy acoustic phonon modes can be in
research needs to be done on how to realize this phasa-two-mode phonon quadrature squeezed state given ap-
sensitive detection scheme, and we hope that our initighropriate initial conditions. We achieve this by dealing
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separately with (i) the optical excitation of the pump
mode optical phonons and (ii) the anharmonic scattering
of the pump-mode phonons into the lower energy acoustic
phonons. We have also briefly analyzed a potential detec-
tion method of phonon squeezed states. Experiments in
quantum optics indicate that phase-sensitive methods—
such as homodyne detection—are the best in detecting
photon squeezed states. Therefore, we have proposed a
detection scheme based on a reflected probe light and an
ordinary phase-sensitive optical detector.

As in the photon case [1], the experimental realization [g]
of phonon squeezed states might require years of work[9]
after its initial proposal. We hope that our effort will lead [10]
to more theoretical and experimental explorations in the
area of phonon quantum noise modulation.
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