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Nature of Magnetic Dynamo Growth in the High Magnetic Reynolds Number Limit
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It has been conjectured that essential features of fast kinematic magnetic dynamos in the presen
of small magnetic diffusivity can be extracted from the ideal (i.e., diffusionless) kinematic dynamo
equation. In particular, predictions concerning the cancellation exponent, the dynamo growth rate, an
the growth of moments of the magnetic field in the nonideal case can be made based on the idea
dynamics. This paper presents the first confirmation of these predictions by numerical computations o
a spatially smooth chaotic flow at very high magnetic Reynolds number.
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Fast dynamo action [1] refers to the exponential grow
of magnetic field perturbations to a flowing electrical
conducting fluid in the limit of vanishing resistivity. Flow
having this property are commonly thought to be respon
ble for the formation of the large magnetic fields found
[1,2] planets with liquid cores, the outer layers of stars,
terstellar gas making up the gaseous disk of the galaxy,
The problem of determining dynamo action is referred
as the kinematic magnetic dynamo problem [1–25], wh
attention is restricted to the initial stage of the dynamo
which the magnetic field is small enough that the rea
tion on the flow field provided by the Lorentz force ca
be neglected. The equation describing the effect of a p
scribed incompressible flowysx, td s=== ? y ­ 0d on a mag-
netic fieldBsy, td reads

≠By≠t 1 y ? ===B ­ B ? ===y 1 R21
m =2B , (1)

where y has been normalized to a typical velocity o
the flow y0, and x to a typical length scale of the flow
L0. Note that the termR21

m =2B represents magnetic
field diffusion. The dimensionless magnetic Reynol
number is defined asRm ­ s4psL0y0dyc2, wheres is
the electrical conductivity of the fluid. For example
the magnetic Reynolds number for the Sun is of ord
108. It is therefore of interest to investigate the lim
whereRm approaches infinity in Eq. (1). We may start b
settingRm ­ ` as if the fluid were perfectly conducting
Eq. (1) then reduces to the following ordinary differenti
equation,

dB̃ydt ­ B̃ ? ===y , (2)

wheredydt ­ ≠y≠t 1 y ? ===, andB̃ denotes the magnetic
field when diffusion is absent. Note that by replacingB̃
by d in Eq. (2), whered is the infinitesimal separation
between two nearby orbits, the time-evolution equat
for dstd is recovered:ddydt ­ d ? ===y. The equivalence
of the equations forB̃ and d allows one to reduce the
diffusion-free kinematic dynamo problem to the study
the dynamical properties of the underlying flow. It als
implies that only flows providing exponential stretchin
are candidates for fast dynamos [4,7,8,11,25]. In par
ular, we call the flowysx, td chaotic if dxydt ­ ysx, td
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has ergodic regions with a positive Lyapunov expone
h̄ ­ limt!`t21lnfjdstdjyjds0djg . 0, for typical ds0d.

Although chaotic flows seem to be very good cand
dates for fast dynamo activity, some care should be e
ercised in drawing conclusions from the ideal case to t
diffusive case, because the limitRm ! ` is a highly sin-
gular one. This statement is illustrated by noting that t
smallest scaleep for magnetic field variations is given by
[6] ep , R

21y2
m . Thus, although1yRm is small,R21

m =2B
in (1) is not, and it is still a problem to relate the solution
of Eq. (1) at very large finiteRm and (2).

In what follows we test several fundamental issues co
cerning dynamo action in the largeRm limit using numeri-
cal computations of (1) for a model dynamo flow. Becau
of the large magnetic Reynolds number achieved and
cause of other favorable properties of the flow we use, o
computations are able to address issues not resolvabl
previous computations. In particular, we shall focus o
the effect of small diffusivity on the cancellation exponen
on the magnetic flux growth rate, and on the time evol
tion of the magnetic moment growth rates. Our numeric
computations [26] are done atRm ­ 105 using an incom-
pressible, smooth, three-dimensional, chaotic flow of t
form ysx, y, td ­ x0ỹxsyd fstd 1 y0ỹysxd fst 2 Ty3d 1

z0ỹzsxd fst 2 2Ty3d, where fstd is a periodic function
with periodT , fstd ­ 0 for Ty3 1 nT , t , sn 1 1dT
with n integer, so that the flows in thex, y, andz direc-
tions are turned on sequentially. Also,fstd is normal-
ized:

RT
0 fstddt ­ 1. This flow has two features that al

low very efficient computation. The first one is that th
flow is independent of one of the spatial coordinatesz,
for instance). Equation (1) is then separable inz, and
the magnetic field is given a harmonicz dependence,
B , expsikzzd. Consequently, all calculations can be pe
formed on a two-dimensional surface. Dynamos genera
by this type of flow are calledquasi-two-dimensionaldy-
namos [3,15,23,24]. The second feature of our flow is
sequential character, which has the effect of decoupl
the computations along thex andy directions in the three
phases of flow during each period. The integration of t
Fourier representation of Eq. (1) over any third of a p
© 1996 The American Physical Society
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riod T can then be performed independently for each
of modes, rending the computation effectively one dim
sional. [This feature also makes the flow amenable to p
allel computation (not used here).]

The chaotic dynamics generated by this flow can be
alyzed by integratingysx, y, td over one periodT . We ob-
tain a three-dimensional volume-preserving map relat
x at t ­ nT to x at t ­ nsT 1 1d: xn11 ­ Msxnd. Note
that the map does not depend on the specific form offstd.
We chooseỹ to be of the formỹx ­ Ux sinsKyy 1 uxd,
ỹy ­ Uy sinsKxx 1 uyd, ỹz ­ Uz sinsKxx 1 uzd. Note
that ỹ and its convolution with the magnetic field hav
very simple Fourier transforms. We also find it co
venient to make the phase anglesux , uy , and uz time
dependent such that they are independent random
ables, constant in each periodnT # t , sn 1 1dT . In
this case, we take the distributions ofux , uy , and uz to
be uniform on the intervalf0, 2pg, and we reset them si
multaneously att ­ nT . These random phases ensu
that there are no Kolmogorov-Arnold-Moser (KAM) to
and that orbits ofM are ergodic over all space even
low values of the amplitudesUx , Uy, andUz . Small am-
plitudes keep the largest Lyapunov exponent reason
small. The latter quantity provides a rough order of ma
nitude estimate of the growth of the magnetic field a
should not be too large if we want to clearly observe
transition from the nondiffusive growth phase (discuss
subsequently) to the diffusive growth phase. We belie
that our results obtained with this choice of random pha
u are a good qualitative indication of behavior in gene
flows with complicated time dependence.

In most previous numerical dynamo calculations us
steady or time-periodic flows, much of the spatial grid w
occupied by KAM tori. Since fast dynamo action is due
the chaotic regions, much of the grid is, in a sense, was
Another way of saying this is that, since the active reg
is smaller than the full region, the effective Reynol
number is reduced (if we regard the relevant length sc
as the width of the chaotic layer, rather than the size of
full region). Such considerations do not apply for rando
flows since KAM surfaces are necessarily absent.

It has been conjectured in Refs. [7,10] that the grow
rate of the magnetic flux through a macroscopic surf
S, FSstd ­

R
S B ? dA, is invariant when taking the limit

Rm ! `. This can be understood by considering t
scale over which diffusion is active. The role of sma
diffusion is to smooth and rearrange spatial variatio
t
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of B over lengths of the orderR
21y2
m in a characteristic

time interval1ygmaxsRmd, wheregmaxsRmd is the growth
rate of the fastest growing mode. For largeRm, this
scale will be small compared to the dimensions ofS,
and the exponential growth ofFSstd is thus expected to
be Rm independent. The same reasoning applies to
cancellation exponentk [18,19,27].

A formula relating the flux growth rate to the stretchin
properties of the flow and the cancellation exponent h
been derived on heuristic grounds in Ref. [19]. In th
case of a conservativez-independent flow, the product o
the eigenvalues of its Jacobian is one, and the eigenva
l2 associated with the eigenvector in thez direction
is also one. Therefore, the two remaining eigenvalu
l1 . l3 are the inverse of each other, and the stretchi
properties of the flow are uniquely determined by th
largest growth factorl1. Hence, the formula reads

gp ­ lim
n!`

n21 lnkl12k
1 l , (3)

wherel1sx, nd ­ jdsndjyjds0dj maximized overds0d and
the averagek· · ·l is taken over the ergodic region. A dis
tribution functionPsh, nd [28] of the finite-time Lyapunov
exponenthsx, nd ­ n21 ln l1sx, nd for randomly chosenx
can be obtained numerically [26,29]. For our flow,Psh,
nd is well approximated by a Gaussian of the formPsh,
nd ø

p
nG00sh̄dy2p expf2s1y2dnG00sh̄dsh 2 h̄d2g, where

fnG00sh̄dg21y2 is the standard deviation ofh. The aver-
age in Eq. (3) can then be performed,kl12k

1 l >R
Psh, nd expfs1 2 kdnhgdh, andgp is obtained in terms

of k, h̄ andG00sh̄d:

gp ­ s1 2 kdh̄ 1 s1 2 kd2y2G00sh̄d . (4)

Table I lists the results for the following paramete
values of the flow:Ux ­ Uy ­ 1.6, Uz ­ 1, and Kx ­
Ky ­ 1. The harmonicz dependence of the dynamo
solution is arbitrarily set tokz ­ 1, and we note that the
growth rate and cancellation exponent depend onkz (this
dependence will be reported elsewhere). The results in
first two columns (corresponding tok andgp) are reported
without giving descriptions of details of the computation
which will be given in a longer publication [26]. We
wish to note, however, thatthe cancellation exponent is
the same to within numerical accuracy for both ideal an
diffusive cases.Further, the results forgp in Table I show
thatthe flux growth rates with and without diffusion are i
TABLE I. Cancellation exponentk, flux growth ratesgp, initial (or ideal) moments growth rates̃gn , and postdiffusion moments
growth ratesgn. The predicted values are calculated using the numerically obtained baluesG00shd ­ 3.366, h ­ 0.313, and
k ­ 0.47 6 0.01.

k gp g̃0 g̃1 g̃2 g0 g1 g2

Predicted · · · 0.2086 0.01 0.313 0.462 0.610 0.208 0.208 0.208
MeasuredsRm ­ `d 0.47 6 0.01 0.206 0.05 0.32 0.48 0.61 · · · · · · · · ·
MeasuredsRm ­ 105d 0.46 6 0.03 0.216 0.05 0.34 0.45 0.57 0.19 0.17 0.16
2271
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very good agreement and agree with the theoreti
prediction[Eq. (4)] when the numerically estimated value
of h̄, G00sh̄d, and the cancellation exponentsk ­ 0.47 6

0.01d are used.
As an example showing the quality of numerical resu

achievable with our flow computations, we provide,
what follows, a detailed discussion of the growth
moments of the magnetic field (columns 3–8 of Table

Let Fnsnd be thenth root of thenth moment of the
modulus of the magnetic field at timen:

Fnsnd ;
µ

S21
Z

S
jBsx, y, 0; ndjndxdy

∂1yn

, n fi 0 ,

(5)

whereS is a two-dimensional surface in thesx, yd plane.
F1snd can be interpreted as the flux density witho
cancellation andF2snd as the square root of the mag
netic energy density. The limitn ! 0 yields F0snd ­
expfS21

R
S ln jBsx, y, 0; ndjdxdyg. Let gn denote the ex-

ponential growth rate ofFnsnd. Because of the equiva
lence between the ideal magnetic fieldB̃sxd and the in-
finitesimal displacementdsxd, we note that̃g0 is the Lya-
punov exponent̄h and thatg̃1 is the topological entropy
of the underlying flow, wherẽgn is the growth rate of
the nth moment of the ideal magnetic field. [Hereg̃n is
obtained by replacingFn by F̃n , where F̃n is given by
Eq. (5) withB̃ replacingB.]

Contrary to the magnetic flux, the momentsFnsnd
exhibit a transition at the onset of diffusion, i.e., whe
the smallest variation scaleepsnd reaches the diffusive
scale [13]. While the diffusion term is still negligible
the moments exhibit different growth rates as a functi
of n with gn ­ g̃n. However, when diffusion sets in, th
smallest scale becomes time independentsep , R

21y2
m d,

and we consequently expect the growth rates of
moments to all collapse to the dynamo growth rate [1
independent ofn: gn ­ gmaxsRmd.

The moment growth rates before the onset of diffusi
g̃n can be calculated using the probability distribution
finite time Lyapunov exponents,Fnsnd , kln

1 sx, ndl1yn ­
f
R

Psh, nd expsnnhddhg1yn . Using again the Gaussia
approximation forPsh, nd, the growth rates̃gn read

g̃n ­ h̄ 1 ny2G 00sh̄d . (6)

This approximation is in excellent agreement with num
ically obtained growth rates. See Table I and the plot
Fig. 1(a).

The timestn at which the diffusion starts to affec
the growth of the different moments can be estima
in the following way. As n increases, large fields
acquire a greater influence in determining the value
the nth moment. Larger fields are the ones whose fl
lines experienced a larger amount of stretching and
therefore located in regions of sharper variationsl3 ­
l

21
1 d characterized by a smaller local scaleesx, nd. Thus,

we expect high moments to feel the effect of diffusio
2272
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FIG. 1. (a) The time evolution of keFnsndl, n ­
0, 1y3, 2y3, . . . , 2 is plotted on a logarithmic scale. The growt
ratesg̃n are the slopes of the fits to the corresponding straig
lines. (b) The time evolution ofkFnsndl, n ­ 0, 1, . . . , 6 is
plotted on a logarithmic scale. The growth ratesgn are the
slopes of the fits to the corresponding straight lines. T
magnetic Reynolds numberRm is 105.

faster than low moments, or, in other words, the tim
tn at which the moment feels the effect of diffusio
are expected to decrease asn increases. Using the
equivalence

R
S jBsndjndxdy , kln

1 sx, ndl, we associate
Fnsnd to a magnetic field whose strength is given by th
average stretchingkln

1 l1yn. The variation scale attached
to this larger field is given byen ­ L0kln

1 l21yn. Setting
en ­ L0y

p
Rm, we obtain the diffusion transition times

tn ø ln Rmyf2h̄ 1 nyG00sh̄dg ­ ln Rmys2g̃nd. The times
tn coincide roughly with the end of the transition from
the ideal growth phase to the diffusive growth phase
the plot of Fig. 1(b).

For the ideal case in Fig. 1(a), the different moments
B̃ clearly grow at different rates. Table I lists the growt
rates for the ideal case and corresponding predictions fr
Eq. (6). The agreement between the numerically measu
and the predicted values is very good. The situation w
diffusion in Fig. 1(b) is radically different. After an initial
phase similar to what is observed in the ideal case
transition occurs at which the growth ratesgn collapse
approximately on the flux growth rategp. The growth
ratesg0, g1, and g2 are listed in Table I. These value
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are close to each other compared to their much gre
differences before diffusion sets in [30].

In conclusion, in this paper we present numeric
results on a high magnetic Reynolds number dynamo fl
and use these results to investigate several outstan
issues in dynamo theory. In particular, we find th
following: (i) The flux growth and cancellation exponen
calculated atRm ­ 105 from (1) and at infiniteRm

from (2) are approximately the same. (ii) A formu
[Eq. (3)] relating the largeRm dynamo growth rate to
the cancellation exponent is found to hold to within th
numerical accuracy obtained. (iii) Growth of magne
field moments occurs in two stages and is in acco
with the calculations based on the finite-time Lyapun
exponent distribution.
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