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Nature of Magnetic Dynamo Growth in the High Magnetic Reynolds Number Limit
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It has been conjectured that essential features of fast kinematic magnetic dynamos in the presence
of small magnetic diffusivity can be extracted from the ideal (i.e., diffusionless) kinematic dynamo
equation. In particular, predictions concerning the cancellation exponent, the dynamo growth rate, and
the growth of moments of the magnetic field in the nonideal case can be made based on the ideal
dynamics. This paper presents the first confirmation of these predictions by numerical computations on
a spatially smooth chaotic flow at very high magnetic Reynolds number.

PACS numbers: 47.65.+a, 05.45.+b, 47.52.4j

Fast dynamo action [1] refers to the exponential growtthas ergodic regions with a positive Lyapunov exponent,
of magnetic field perturbations to a flowing electrically 7 = lim,_..z~'In[|&(z)|/|6(0)|] > 0, for typical §(0).
conducting fluid in the limit of vanishing resistivity. Flows  Although chaotic flows seem to be very good candi-
having this property are commonly thought to be responsidates for fast dynamo activity, some care should be ex-
ble for the formation of the large magnetic fields found inercised in drawing conclusions from the ideal case to the
[1,2] planets with liquid cores, the outer layers of stars, in-diffusive case, because the linkf, — o is a highly sin-
terstellar gas making up the gaseous disk of the galaxy, etgular one. This statement is illustrated by noting that the
The problem of determining dynamo action is referred tosmallest scale.. for magnetic field variations is given by
as the kinematic magnetic dynamo problem [1-25], wherjg] ¢, ~ R\ Thus, althougH /R,, is small,R,'V>B
attention is restricted to the initial stage of the dynamo inin (1) is not, and it is still a problem to relate the solutions
which the magnetic field is small enough that the reacof Eq. (1) at very large finit®,, and (2).
tion on the flow field provided by the Lorentz force can |n what follows we test several fundamental issues con-
be neglected. The equation describing the effect of a precerning dynamo action in the lardg, limit using numeri-
scribed incompressible flow(x, 1) (V - v = 0)onamag-  cal computations of (1) for a model dynamo flow. Because
netic field B(v, t) reads of the large magnetic Reynolds number achieved and be-

oB/ot + v-VB =B -Vv + R;1V2B, (1) cause of other favorable properties of the flow we use, our
of computations are able to address issues not resolvable in
W previous computations. In particular, we shall focus on

the flow vo, andx to a typical length scale of the flo the effect of small diffusivity on the cancellation exponent
Lo. Note that the termr, 'V2B represents magnetic . y exp '
on the magnetic flux growth rate, and on the time evolu-

field diffusion. The dimensionless magnetic Reynoldst. fth " i th rat o ical
number is defined ag,, = (47 Lovg)/c2, where o is ion of the magnetic moment growth rates. Our numerica

. _ 5 . . _
the electrical conductivity of the fluid. For example, computations [26] are done &, = 10° using an incom

the magnetic Reynolds number for the Sun is of orde ressible, smooth, three-dimensional, chaotic flow of the
10%. It is therefore of interest to investigate the limit or~m( v(x’y’_t); ’;va%)f(t) - J.’OU-"(x)f.(td._ 7]:/3):
whereR,, approaches infinity in Eq. (1). We may start by Z()_:!hz X)f(ijT / )_ \(')err(;f(;)_k's ‘; zer|0<|c L_Ln(l: |;)n
settingR,, = « as if the fluid were perfectly conducting. with period7, f(r) = 0 for 7/ " < (n )

Eq. (1) then reduces to the following ordinary differential V.V'th n integer, so that the ﬂO.WS in the y, af‘dz direc-
equation, tions are turned on sequentially. Alsf(r) is normal-

- _ ized: fg f(t)dt = 1. This flow has two features that al-
dB/dt = B - Vv, ) Jow very efficient computation. The first one is that the
whered/dt = 9/dt + v - V, andB denotes the magnetic flow is independent of one of the spatial coordinatgs (
field when diffusion is absent. Note that by replaciBg for instance). Equation (1) is then separablezjnand
by é in Eq. (2), whereé is the infinitesimal separation the magnetic field is given a harmonic dependence,
between two nearby orbits, the time-evolution equationB ~ exp(ik,z). Consequently, all calculations can be per-
for 6(¢) is recovereddéd /dt = & - Vv. The equivalence formed on a two-dimensional surface. Dynamos generated
of the equations foB and § allows one to reduce the by this type of flow are calleduasi-two-dimensionaly-
diffusion-free kinematic dynamo problem to the study ofnamos [3,15,23,24]. The second feature of our flow is its
the dynamical properties of the underlying flow. It alsosequential character, which has the effect of decoupling
implies that only flows providing exponential stretchingthe computations along theandy directions in the three
are candidates for fast dynamos [4,7,8,11,25]. In particphases of flow during each period. The integration of the
ular, we call the floww(x, ¢) chaotic ifdx/dt = v(x,t)  Fourier representation of Eq. (1) over any third of a pe-

where v has been normalized to a typical velocity
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riod T can then be performed independently for each sef B over lengths of the ordek» "> in a characteristic
of modes, rending the computation effectively one dimentime interval 1/ yma(Rm), Where ymadR) is the growth
sional. [This feature also makes the flow amenable to parate of the fastest growing mode. For lardg,, this
allel computation (not used here).] scale will be small compared to the dimensions Sf
The chaotic dynamics generated by this flow can be anand the exponential growth @bg(z) is thus expected to
alyzed by integrating(x, y, ) over one period’. We ob-  pe R,, independent. The same reasoning applies to the
tain a three-dimensional volume-preserving map relatingancellation exponent [18,19,27].
xatt =nTtoxatr = n(T + 1) x,+1 = M(x,). Note A formula relating the flux growth rate to the stretching
that the map does not depend on the specific forffilof.  properties of the flow and the cancellation exponent has
We choosew to be of the formi, = U, sin(Kyy + 60),  been derived on heuristic grounds in Ref. [19]. In the
vy = Uysin(K,x + 6y), 9, = U sin(K,x + 0;). Note case of a conservativeindependent flow, the product of
that # and its convolution with the magnetic field have the eigenvalues of its Jacobian is one, and the eigenvalue
very simple Fourier transforms. We also find it con- ), associated with the eigenvector in thedirection
venient to make the phase anglés ¢,, and 6, time s also one. Therefore, the two remaining eigenvalues
dependent such that they are independent random vark, > A5 are the inverse of each other, and the stretching
ables, constant in each peried” = ¢ < (n + DT. In  properties of the flow are uniquely determined by the

this case, we take the distributions @f,6,, and 6, to  |argest growth facton;. Hence, the formula reads
be uniform on the intervdl0, 27], and we reset them si-

multaneously at = n7. These random phases ensure v = lim n~tIn(Al =%y, 3)
that there are no Kolmogorov-Arnold-Moser (KAM) tori e

and that orbits ofM are ergodic over all space even at\here A, (x, n) = |6(n)|/|6(0)] maximized overd (0) and
low values of the amplitude§’;, Uy, andU.. Small am-  the averagé- - -) is taken over the ergodic region. A dis-
plitudes keep the largest Lyapunov exponent reasonablyipution functionP(h, n) [28] of the finite-time Lyapunov
small. The latter quantity provides a rough order of magexponenti(x,n) =n""'In A;(x, n) for randomly chosew
nitude estimate of the growth of the magnetic field andcan be obtained numerically [26,29]. For our floi(/,
should not be too large if we want to clearly observe the,) is well approximated by a Gaussian of the fofth,
transition from the nondiffusive growth phase (discussed,) ~/nG"(h) /27 exd—(1/2)nG"(R)(h — h)*],  where
subsequently) to the diffusive growth phase. We beIieveEnGu(;l)]—l/z is the standard deviation df. The aver-
that our results obtained with this choice of random phasegge in Eq.(3) can then be performed)} *) =

6 are a good qualitative indication of behavior in generalfp(h’n) exd(1 — «)nh]dh, andy. is obtained in terms

flows with complicated time dependence. of k, h andG"(h):
In most previous numerical dynamo calculations using
steady or time-periodic flows, much of the spatial grid was v« =1 — )b + (1 — k)*/2G"(h). (4)

occupied by KAM tori. Since fast dynamo action is due to
the chaotic regions, much of the grid is, in a sense, wasted. Table | lists the results for the following parameter
Another way of saying this is that, since the active regiorvalues of the flow:U, = U, = 1.6, U, = 1, andK, =
is smaller than the full region, the effective ReynoldsK, = 1. The harmonicz dependence of the dynamo
number is reduced (if we regard the relevant length scalsolution is arbitrarily set t&, = 1, and we note that the
as the width of the chaotic layer, rather than the size of thgrowth rate and cancellation exponent depend ofthis
full region). Such considerations do not apply for randomdependence will be reported elsewhere). The results in the
flows since KAM surfaces are necessarily absent. first two columns (corresponding toandy..) are reported

It has been conjectured in Refs. [7,10] that the growthwithout giving descriptions of details of the computations
rate of the magnetic flux through a macroscopic surfacevhich will be given in a longer publication [26]. We
S, Bs(r) = fSB - dA, is invariant when taking the limit wish to note, however, thahe cancellation exponent is
R, — . This can be understood by considering thethe same to within numerical accuracy for both ideal and
scale over which diffusion is active. The role of small diffusive casesFurther, the results foy.. in Table | show
diffusion is to smooth and rearrange spatial variationghatthe flux growth rates with and without diffusion are in

TABLE I. Cancellation exponenk, flux growth ratesy., initial (or ideal) moments growth ratej,, and postdiffusion moments
growth ratesy,. The predicted values are calculated using the numerically obtained ball(@3$ = 3.366, h = 0.313, and
k =047 + 0.01.

K Y Yo Y1 Y2 Yo Y1 Y2
Predicted 0.208+ 0.01 0.313 0.462 0.610 0.208 0.208 0.208
MeasuredR,, = ©) 0.47 = 0.01 0.20+ 0.05 0.32 0.48 0.61 ---
MeasuredR,, = 10°) 0.46 = 0.03 0.21+ 0.05 0.34 0.45 0.57 0.19 0.17 0.16
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very good agreement and agree with the theoretical 10000F D™
prediction[Eg. (4)] when the numerically estimated values i v=5/3 ]
of h, G"(h), and the cancellation exponefk = 0.47 * 1000k v=4/3
0.01) are used. F

As an example showing the quality of numerical results
achievable with our flow computations, we provide, in
what follows, a detailed discussion of the growth of b
moments of the magnetic field (columns 3-8 of Table 1). 10k

Let F,(n) be thewvth root of the vth moment of the :
modulus of the magnetic field at time

v=1
v=2/3

100 v=1/3

(Fyn))

1/v
Fy(n) = <S*1] IB(x,y,O;n)l”dxdy> , v #0,
N
(5) 70005

whereS is a two-dimensional surface in the, y) plane.

Fi(n) can be interpreted as the flux density without

cancellation andF,(n) as the square root of the mag-

netic energy density. The limit — 0 yields Fy(n) = ~

exdS~! [In|B(x,y,0;n)|dxdy]. Lety, denote the ex- E}
&,

ANEEANERNENENEN

o = N WO

<
1

ponential growth rate of",(n). Because of the equiva- -
lence between the ideal magnetic figdkix) and the in- 10k
finitesimal displacemer@(x), we note thaty, is the Lya- g
punov exponent and thaty, is the topological entropy
of the underlying flow, wherey,, is the growth rate of
the »th moment of the ideal magnetic field. [Hefg is ! : : :

obtained by replacing”, by F,, whereF, is given by ° ° " ° =

ch':(5) WlthBreEIacmgB.] ic f h FIG.1. (@ The time evolution of (?}(n)), v =
ontrary to the magnetic flux, the momen (n) 0,1/3,2/3,...,2is plotted on a logarithmic scale. The growth

exhibit a transition at the onset of diffusion, i.e., whenratesy, are the slopes of the fits to the corresponding straight
the smallest variation scale.(n) reaches the diffusive lines. (b) The time evolution ofF,(n)),» = 0,1,...,6 is

scale [13]. While the diffusion term is still negligible, P:Otted ofn térl] Io??ritthmit% scale. ThedQFOWtft‘ f?tﬁf Iare theTh
the moments exhibit different growth rates as a functiorfn %%isé ti?: Reinoll js I;)umbeﬁcoirsrelzgon Ing straight lines.  The
of » with y,, = ¥,,. However, when diffusion sets in, the " '

smallest scale becomes time independent~ Rn_ll/z),

and we consequently expect the growth rates of théaster than low moments, or, in other words, the times

moments to all collapse to the dynamo growth rate [13}r, at which the moment feels the effect of diffusion

independent o¥: v, = ymax(Rn). are expected to decrease asincreases. Using the
The moment growth rates before the onset of diffusiorequivalence [ |B(n)|”dxdy ~ (A7 (x,n)), we associate

¥, can be calculated using the probability distribution of F,,(n) to a magnetic field whose strength is given by the

finite time Lyapunov exponents,, (n) ~ (A} (x, n))!/* = average stretchingA!)!/”. The variation scale attached
[[ P(h,n)expnvh)dh]'/?. Using again the Gaussian to this larger field is given by, = Lo(A})~1/*. Setting
approximation forP(h, n), the growth ratey, read e, = Lo/+/R,,, we obtain the diffusion transition times
_ _ ~ ho+ "(h)] = Vv [
50— 7+ /26" (). ©) 7, =InR,/[2h + v/G"(h)] = InR,,/(2%,). The times

7, coincide roughly with the end of the transition from
This approximation is in excellent agreement with numerthe ideal growth phase to the diffusive growth phase on
ically obtained growth rates. See Table | and the plot irnthe plot of Fig. 1(b).

Fig. 1(a). For the ideal case in Fig. 1(a), the different moments of
The timesr, at which the diffusion starts to affect B clearly grow at different rates. Table | lists the growth
the growth of the different moments can be estimatedates for the ideal case and corresponding predictions from
in the following way. As v increases, large fields Eq. (6). The agreementbetween the numerically measured
acquire a greater influence in determining the value ofind the predicted values is very good. The situation with

the vth moment. Larger fields are the ones whose fluxdiffusion in Fig. 1(b) is radically different. After an initial
lines experienced a larger amount of stretching and arphase similar to what is observed in the ideal case, a
therefore located in regions of sharper variation =  transition occurs at which the growth rates collapse
A7) characterized by a smaller local scale, ). Thus, approximately on the flux growth ratg.. The growth

we expect high moments to feel the effect of diffusionratesvyy, yi, andy, are listed in Table I. These values
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