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Transition from Poisson Regularity to Chaos in a Time-Reversal Nonlnvariant System
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In a random matrix model, the transition from arbitrary to chaotic correlations is analytically
evaluated for the case of broken time-reversal invariance. The use of the supersymmetry method

allows for a nonperturbative calculation. As an application, the transition from Poisson regularity to
chaos is worked out. The result is a double integral which is exact for the entire transition.

PACS numbers: 05.45.+b, 05.40.+j, 11.30.Er

The transition from regular to chaotic behavior is of the case that(") is drawn from the GUE and apply the
particular interest for chaos theory. Among the quantunresults for the transition from Poisson regularity to chaos.
systems showing this crossover, the hydrogen atom in a As functions of the transition parameter we wish to
strong magnetic is probably the most intensely studied onstudy thek-level correlation functionsRy(xy,...,x, @)

[1]. The transition manifests itself in the spectral fluctu-depending ork energiesx,,p = 1,...,k. To do so, we
ation properties, especially in the nearest neighbor spaciefine the related functions
ing distribution and the spectral rigidity [2,3]. There are

: . ; . ~ 1
many more examples in physics. In heavy ion reactions,  Ri(xi,...,xs, @) = —kf d[HO1PY (H©)
a spreading of the electrical quadrupole transition strength 77 f
has been observed which can be understood in terms of M1 (1) 1
a regularity chaos transition [4]. In condensed matter X ] dlH )Py (H )l_[ trxt - H(a)’ 2)

physics, the phenomenon of localization can also be re- . p._l " : .

lated to this crossover. Billiard systems [5] show simi-Where the+ energies -are given imaginary Increments
lar transitions as well. Starting from a regularly shape uch thatr, = x, * ie. The signs are not correlated
billiard, slight changes of the geometry can make the dy—or different p. The phy5|call.y Interesting functions
namics gradually or even abruptly chaotic. Although theRk(x1. ..., xx, @) are the correlations involving solely the

list of examples is far from being complete, it is obvious Maginary parts of the Green function. Hence, they are

that a deeper theoretical understanding of this transition i hear comblnatlons_of the functlon_s (2?' Advantageously,

a worthwhile task. the latter can be written as the derivatives
To construct a statistical model, we rely on random ma-~ 1 ok

trix theory [6]. Because of the general symmetry con-Relxis o xp, @) = Qmk T o7

straints, a time-reversal invariant system with conserved r=l / (:?‘:)

or broken rotation invariance is modeled by the Gauss- . ) ]

ian orthogonal (GOE) or symplectic ensemble (GSE), re®f @ normalized generating functidfy(x + J,a). The

spectively, while the Gaussian unitary ensemble (GUEfNergies and the source variables are ordered in the

models the fluctuation properties of a system under brodiagonal matricesc = diag(x,xy, ..., X, x) and J =

ken time-reversal invariance. These ensembles are knowhag(—J1, +Ji,..., =Ji, +Ji), respectively. The phys-

to describe the generic fluctuation properties of chaotidcally relevant correlationsRy(xi. ..., x;, ) are gener-

quantum systems very accurately [3,5]. We write thedted by the functiolsZ,(x + J, a) where the symbols

N X N random matrix representing the total Hamilton- Stands for the proper linear combination. Using the stan-

Zilx + J,a)
p

ian as a sum of a regular and a chaotic part, dard techniques of the supersymmetry me_thod [7,8] the
© i average over the GUE can be performed directly and the
H(a)=H" + aH", (1) generating function acquires the form

where « is the dimensionless transition parameter. The

matricesH) are drawn from a Gaussian ensemble with 7, (x + J, o) = f d[H(O)]P,(\(,))(H(O))f d[]0k (o, @)
the probability density functionPj(vl)(H(“). Although

the regularity chaos transition is our main interest, we  xsdet '[(x* + J — o) ® 1y — 1o ® H?], (4)

make (0[;0 assumptions yet for the probability dIStrIbu'where(r is a2k X 2k Hermitian supermatrix. For details

tion Py (H'?) of the matricesH”). The decomposition f the derivation and notation, the reader is referred to
(1) can be justified for potential and billiard systems.ref [9]. We introduced th& X N and the2k X 2k unit

Detailed numerical simulations for the transition of the yatricesly and1,.. The normalized graded probability
fluctuations can be found in Ref. [4]. However, despitegensity function

several attempts, a full-fledged analytical discussion was _ okk=1) 1 )
still lacking. Here, we present a general calculation for Orlo, @) =2 ex Ca? stror ()
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reduces to the well defined superspatdunction [7,9] take a new type of boundary contribution [7,8,12] into
6(o) in the limit @ — 0. Thus, for vanishing transition account which does not occur in ordinary analysis. How-
parameterZ(x + J, @) becomes indeed the generatingever, in Refs. [9,13] it was shown that we do not need to
function worry about them when calculating correlation functions
of the type we are interested in here. After the integra-
7200 + J) = f d[HO1PY (H©) tion over the unitary supergroup with the help of Eq. (8),
we calculate the required derivatives (3) of the generating
X sdet '[(x" +J)® 1y — 1o ® H?] function exactly as in Ref. [9]. Collecting everything, we
find
© (-D*
of the arbitrary correlationsR,((O)(xl,...,xk). We now R, e @) mk
make the crucial observation that the shift— o — a0
x — J removes all angular degrees of freedom in the X ka(S — X, @)3Z; (5)Bi(s) dls]
supermatrix ¢ from the superdeterminant in Eq. (4). (20)
Hence, introducing a2k X 2k unitary supermatrixu
and the diagonalizatioor = u~'su, we can rewrite the
generating function for the transition in the form

for nonzeroa. The casex = 0 is trivial by construction.

In order to calculate the generic fluctuations, we have

to unfold the correlation functions for large level num-
Zi(x + J,a) = f Oulo™ = x = 1, )2 (s) d[ o], ber N by removing the dependence on the level den-
sity. We define new energigs, = x,/D,p = 1,...,k,

() where the mean level spacing is of the orderl/+/N.
where thek eigenvaluess,;,p = 1,...,k, in the bo- The transition parameter is defined on the origi-
son boson and thek eigenvaluesis,,,p = 1,...,k  nal energy scale and has therefore to be unfolded, too.
in the fermion sector are ordered in the matrixThe new, universal transition parameter= «/D was
s = diag(sy1, 812, ..., Sk1, 1Sk2). first introduced by Pandey [14]. Thk-level correla-

In order to work out the correlations, we do not use thetion functions on the unfolded scalg, (&1,..., &, A) =
coset method of Refs. [7,8]; we rather rely on the gradedimy_... D*R;(x1, ..., xx, @) are then generic, i.e., transla-
eigenvalue method developed in Refs. [9,10]. It rests omion invariant over the spectrum. It is useful to unfold the
the fact that the average over the unitary supergroup iintegration variables in Eq. (10) by making the rescaling
expressions of the type (7) can be done in one single step.— s/D. We arrive at

We need the transformation of the Cartesian volume (— 1)k

element to eigenvalue-angle coordinates [9] which readsXk (€155 € A) = rk

d[o] = Bi(s)d[s]d u(u) whered[s] is the product of the ©

eigenvalue differentials andu(x) is the invariant Haar X f Gi(s — & Mz (5)By(s) d[s]
measure of the unitary supergroup. The square root of (11)

the Jacobian, here referred to as Berezinian, is given b i

Bi(s) = def1/(s,1 — isg2)]pq=1..k Which reflects [9] for nonzero A Wh_ere the unfolded_ generating
the determinant structure [6] of the GUE correlation func-function of the (g;)lrbltrary correlations is given by
tions. The angular average can be performed by using: (s) = limy—. Z; (Ds). Hence, we have expressed
the supersymmetric generalization [9] of the Harish-the unfoldedk-level correlation function for the transition

Chandra-ltzykson-Zuber integral [11]. We define afrom arbitrary to GUE fluctuations as2&-fold integral.

second Hermitian supermatrix 'rv wherev is supe- The integral representation (11) immediately implies
runitary andr diagonal. The angular average over thethe translation invariance. Since the arbitrary correlations
shifted Gaussian probability density function yields XIEO)(&,-.-,&) are assumed to be generic, the generat-

. . Gi(s,r, @) ing function S‘Z;io)(s) can depend only on the differences
f OQr(u™ su — v rv,a)du(u) = Bu(s)Bi(r) (8)  of the eigenvalues,; andis,,. Consequently, the shift
. -k ¢ ., . .s— s — £in Eg. (11) makes the right hand side a func-
For the Gaussian kernel on the right hand side it igjo, of the energy differences, — &, alone; this is the
sufficient [9,10] to writeGy(s, 7, @) = Gi(s — r,a@) With  yanqjation invariance. This observation has two impor-
1 1 5 tant consequences. First, the level density becomes auto-
Gils = ra) = — exi{_ﬁm(s - ) } (9)  matically unity everywhere as it should be. For 1, the
Vra? generating function is only a function of, — is;, and, by
if further integration over the eigenvaluess required. If  construction, its power series expansion has to start with
not, all terms involving the permutations of the eigenval-—(s1; — is;2). This allows one to do both integrals by
uesr,; andir,, have to be added as in the ordinary caseapplying a standard mean value theorem of complex anal-
[11]. Furthermore, the integration ovemrequires one to ysis yielding the value of the integrandsat — is;; = 0
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and thusX;(£;,A) = 1. Second, the two-level correla- from Eq. (6) for the generating function
tion function can be expressed as a double integral. We

0 0
introduce the sumr = &, + &, and the difference = ZIE )(S) = [515 )(S)]N
& — & of the energies. According to this rotation in o
energy space, we make the change= si; + sa1, t; = 29%) = f 0(2) l_[ BSpp =, (14)
S11 — S$21,82 = S12 + s20, @ndty = 512 — 59 Of the inte- = Spl -z

. . . ) .
gration variables. Sinc8z; (s) depends only on the dif- |n order to compute the mtegral we use the identity
ferences of the eigenvalues, it cannot depend;oft is,.

ko . _ k
Thus, we WritGSzéo)(s) = Széo)(sl — iso, t1, 1) Which, lsfziz =1+ Z fp(s)
for reasons of consistency, should be even in each of p=15p1 = 2 p=15p1 — 2.
i i i . 1Sqg2 — Spi
rhe differences; and 1. By using the aforementioned by(s) = (isp2 — $p1) l—[ 4 Pl (15)
integral theorem, the integrals over ands, can be per- g+p Sql ~ spl

formed straightforwardly and the dependenceraiisap- which can be proven by induction or by standard methods

pears. The two-level correlations can thus be cast into thgf complex analysis. Hence, the integral in Eq. (14)

form becomes
Hee <0> A(O)
Xa(r,A) = 773 P f exp( e (17 + z§)> G () =1+ — Z by(s)R1 (sp1) s (16)
. rt1 . Tl 1385 ~(0) . L
X smh/\— smﬁ 2, 20 whereR; ' (x) is the Stiltjes transform ch (x). To eval-
(i + 1) uate the generating function on the unfolded scale, it is
X 230,11, 1) dty dt (12)  reasonable to choose the two limiting one point functions

which is usually not amenable to further analytical treat equal we ser\”(x) = R (x). Usingb,(Ds) = Db(s)
ment. For the higher correlations with> 2, similar sim- andR1 (Dspl) — +,/D for N — o, we find
plifications are likely to exist.

All results derived so far are correct for arbitrary initial zk '(s) = l_[ exdFimh,(s)]. (17)
correlationsR,((O)(xl,.. , X)) oer (fl,..., &1). We now
apply them to the case of a Poisson, i.e., correlation-freefhe signs are determined by the choice of the sign of
initial spectrum. The Poisson probability density functionthe imaginary increment in the Green function. The two-

reads simply level correlation function can be worked out by using the
0 N general result (12). In the coordinates introduced above,
Py H?) = [1pOHD) [T sRer)8(ImA ) the initial condition takes the form

n>m

(13) e 1 )
, _  3220,1,0) = —Re|exg —ir 2} — 1| (18)
where p©(z) is a smooth, symmetric, but otherwise 2 2

arbitrary, normalized probability density function. It is jn which the exponential has to be interpreted as a power
eaSIly shown that there are no correlations and that thgenes |n\/0|v|ng the Operatol’/tl . With the he|p of

level density is given byR1 (x) Np©(x). We find | Ref. [15] we construct the integral representation
\/277(2‘1 + t2 f exq—e‘K) cogt k)
JK

where I,(z) is the modified Bessel function of first which states our final result. Since theintegral con-
order. This representation allows the evaluation of oneverges as it stands if the integration is done first, we
of the three integrals left in Eq. (12). Introducing polar have already taken the limit — 0.

coordinates for; andr,, the angular integral becomes the The two-level correlation function was already calcu-

\s22 (0 t, ) = 2 (7 + 3k } dk, (29)

Bessel function/,(z) and we arrive at lated for small values of the transition parameter by means
% 1 1 of perturbation expansions in Refs. [16,17]. It can eas-

Xo(r, A) = ) Im[ dK(ﬁ + —) ily be shown that our formula (20) reproduces these re-

K +i2r/ K sults. Lenz [18] derived an integral representation of the

ial ratios of N-dependent determinants which prevented
up to now the evaluation of the limit of infinitely many

% J2< /K2 N iZKr//\2p> (20) levels. Hence, by using the graded eigenvalue method, we

v [* 4 p> \1(V27k p) functionR,(x;, x2, @). Unfortunately, it involves nontriv-
exp —— | ———"
0 P 202 2K
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T T ' ' T the transition from arbitrary to chaotic fluctuation proper-
12k - ties in a time-reversal noninvariant system. The two-level
correlation function could be reduced to a double integral.
10 b i We have applied these results to the crossover from Pois-
son regularity to chaos and, for the first time, given a for-
X,(r)\) osf 4 mula that is valid for the entire transition.
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