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Optimal Periodic Orbits of Chaotic Systems
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Invariant sets embedded in a chaotic attractor can generate time averages that differ from the average
generated by typical orbits on the attractor. Motivated by two different topics (namely, controlling
chaos and riddled basins of attraction), we consider the question of which invariant set yields the largest
(optimal) value of an average of a given smooth function of the system state. We present numerical
evidence and analysis which indicate that the optimal average is typically achieved by a low period
unstable periodic orbit embedded in the chaotic attractor.

PACS numbers: 05.45.+b

Many questions concerning dynamical behavior ardf each of the various determined unstable periodic orbits
addressed by consideration of the long-time average ofere actually followed by the system. In many cases

a functionF of the state vectar, the system performance can be quantified as the value
1 [t of some time averagdfF), as in Eg. (1). One then
(F) = l”ﬂLTf F(x(t")ar', (1a) selects an orbit yielding performance that is best and
10 f feedback stabilizes that orbit. A question that might be
(Fy = lim — Z F(x,), (1b)  asked is whether one can obtain much better performance
T by looking exhaustively at higher period orbits or by
where denotes time and is either continuous [Eq. (la)]considering_ stabilizatio_n of atypicatonperiodic orbits
or discrete [Eq. (1b)]. embeddgd in t_he chaotl_c attractor. .
In this paper we consider systems such thatgyjpical (b) Bifurcation to riddled basins of attraction-

choices of the initialx, the trajectory generated by the Recently a new type of basin of attraction has been found.
dynamical system is chaotic and has a well-defined long! Nis new basin type is called rddled basin [2,3], and
time average (1). (Here “typical” is with respect to the has the property that any point in the basin 'has points in
Lebesgue measure of initial conditions in state SpaCe_z)mother attracto.r’_s basin arbitrarily clpse to it (thg basin,
We note, however, that atypical initial conditions may although of positive volume, has no interior). This type
generate orbits embedded in the chaotic attractor that ha® Pehavior can be present in dynamical systems that
different values foxF) than typical orbits. For example, POSSess an invariant manifold and a chaotic attractor
consider a chaotic attractor with a basin of attractin 1N that manifold.  An interesting basic question is that
Even though there is a set of initial conditions B of how a ngnriddled basin for the chaotic attractorn
all yielding the samevalue for (F), and the state space Pecomes riddled as a system parameter is varied (i.e.,
volume (Lebesgue measure) of these initial conditions i€he bifurcation to a riddled basin) [4]. This bifurcation
equal to the entire volume @, there is still a zero volume ©OC€CUrs [5,6] when the Lyapunov exponent for perturba-
set of initial conditions (“atypical” initial conditions) tONS transverse ta/, maximized over all invariant sets
whose orbits asymptote to sets within the chaotic attractdf) the chaotic attractor, first becomes positive. Thus the
but for which (F) is different from the average attained Study of this bifurcation again focuses on the invariant
by typical orbits. A familiar case where this happens isS€t maximizing an average (i.e., the transverse Lyapunov
when the initial condition is placed exactly on an unstablegXponent) [5-7]. _

periodic orbit embedded in a chaotic attractor (or on the 10 beégin we consider a simple example, namely the

stable manifold of the unstable periodic orbit). doubling transformation
The question we address is the followingWhich
(atypical) orbit on the attractor yields the largest value xi+1 = 2x,(mod 1), (2)

of (F)? To our knowledge this question has not been
previously addressed, yet it is fundamental to at least tw@nd for F' we take
important problem areas of current interest:
(a) Controlling chaos—In one often used method [1] F,(x) = cod27(x — y)]. 3
for the control of chaos by use of small controls the
strategy is to first identify several low period unstableAlthough some of the results we observe for Egs. (2)
periodic orbits embedded in the chaotic attractor. Onend (3) are model specific, we claim that Egs. (2) and
then determines the system performance that would appk8) also yield essential behaviors that should be expected
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in general for low-dimensional chaotic systems. A main TABLE I. Numerical results for doubling map (2).
point will be Fhat thg opnmal.average is typically achieved Theory Eq. (3) Eq. (5)
by a low period periodic orbit [8]. £(p) D) fop) £ foo(p)
For each ofl0° evenly spaced values of, we tested P P 2P P 0% P
the value of F, ) for all periodic orbits of the map (2) with 0.0833 0299 0333 0230  0.258
periodsl to 24. There are on the order #0° such orbits. 0.0833 0160 0212 0163  0.175
Figure 1 shows the period of the orbit that maximizgs) 3’382353 golggs %Zlié 838830 %2131‘(‘)
fqr Egs. (2)and (3) as a fqnction of the phase anglérhe 0.104 0.116 0.0180 0.136 0.169
third column of Table I.glves th_e fracfuoﬁ(p) of phase 0.0313  0.0310 0 00350 00473
valuesy for which a periodp orbit maximizesF,). For 0.0547 0.0573 0 0.0427 0.00664

OCoO~NOOUORWNE|IT

example, ify is chosen at random {19, 1], then over 93% 0.0208 0.0211 0 0.0583 0.00031

of the time, the optimal periodic orbit does not excéed 0.0176  0.0178 0 0.0244 0

in period, and more than half the time the optimal orbit's 10 0.00651 0.00644 0 0.00697 0

period isl, 2, or3. The second column in Table | givesa 11 ~ 0.00895 0.00918 0 0.0164 0

conjectured asymptotic prediction of the fractifty) of 12 0.00195 0.00196 0 0.00516 0

the time a periog orbit maximizesF,) if y is chosen at 12 ggggé; 8888@2 8 888;'28 8

random in[0, 1], 15 0.00061 0.00062 O 000105 0
16—-24 0.00091 0.00092 0 0.00167 0

f(p) = Kp27"¢(p). (4)

Here ¢(p) is the Euler function, which is defined as the

number of integers betweehand p (inclusive) that are  humped functions [e.gE,(x) = —(x — ¥)?] in place of

relatively prime top [e.g., the numbers, 5,7, and11 are  Eq. (3) confirm this.

relatively prime tol2, and so¢(12) = 4]. Thusé(p) = Not only are low period orbits most often optimal, but,

p—1forp=2and¢(p) =p — 1if pis aprime. even when a somewhat higher period orbit is optimal,
The factork is a fitting parameter, which we choose to bejt apparently leads only to a relatively small increase in
1/6 in this example. We see from Table | and the dat8<Fy> as compared to a lower period orbit. This point
plotted as diamonds in Fig. 2 that Eq. (4) agrees very Welis emphasized by the fourth column in Table I, which
with the numerical results for large [the straight line in  gjves the fraction of they values such that the lowest
Fig. 2 has slope-log2 and, for the plotted diamonds, the period orbit that yields a value @F, ) within 90% of the
vertical axis is the logarithm of the numerically computedmaximum value has periog. Thus, for this example,
f(p) divided by p¢(p)]. From Table I, the agreement if one is willing to settle for 90% of optimal, oneever
with Eq. (4) is better than 5% fgr > 5. NotethatEq. (4) has to go above periofl. Also for over 83% of they
apparently has nothing to do with the precise choice ofjalues it suffices to consider only periag2, and3. The
the functionF, in Eq. (3). We believe that Eq. (4) is a relatively small increase ofF,) achieved by going to a
good approximation for typical smooth functions with a higher period is also evident from the plots @), vs
single maximum whose parameter dependence consists 9f where(F.,), denotes the average 8f, over the period
aphase shift. Tests using other quadratic maximum, singlg orbit that is optimal from among all periog orbits.
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Fig. 1. Period that optimize& ,) as a function ofy for the  Fig. 2. Graph of loff(p)/p#(p)] vs p. The straight line
doubling map (2) and function (3). has slope-log2. Inset showsF,), vsy for p = 3,5,8.
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For example, they region neary = 0.37 (cf. Fig. 1) has The fifth column of Table | shows the fraction ®6°

p = 3 andp = 5 intervals with a smallep = 8 interval evenly spaced values of for which a periodp orbit of

in between. A plot ofF,), for p = 3,5,8 in this region  the map (2) maximizes the average of a different function
is shown in the inset in Fig. 2. The weighted average )

(5(F,)s + 3(F,)3)/(5 + 3) is shown as a dashed curve. ~ Fy(x) = cod2m(x — y)] + sinf6m(x — ¥)]. ()
Note that(F, )z closely follows this average but is slightly

above it. ThUS(F, ) is slightly larger than boti(F, s The sixth column of Table | gives the corresponding

d(FN i i rea ~ 047 fraction for the lowestp within 90% of optimal. The
anlt<. 7>5| '”"’.‘fma tregl?n nez;ty t~h 'F ) ¢ truct function in Eq. (5) has three local maxima and three
IS ta.SOF'.” e{?sﬂ']r‘g 0.”8 ef ”e ";‘Ifley “fte S rufctl;rqocal minima. This increases the likelihood of a higher
present In +1g. L, the periods Toflow the pattern of eqeriod orbit maximizing(F, ), as is reflected in the data.
denominators in _the Farey construction of the rationatry, Farey structure, present for smooth functions with
nu[_nbelrs. thhatfls, pe’glveen agy twp gltervlalsh_wrzth a single maximum [e.g., Eq. (3)], is found only partially
optimal orbits ‘ot periodsp, and p, and only NIGNEr, ig cage (and in the examples with two-dimensional
periods associated with any intervenigpgntervals, there maps that follow). Thus the number of intervaiép)

is a smallery |_nterval O.f periodp, + py in t_)etwee_:n, for which a periodp orbit maximizes(F,) is in general
and all othery intervals in between have periods hlghernot equal to the Euler function(p). However, we find

thanp, + p,. Thisis illustrated by Fig. 1. For example, ; c :
a . ! that the size of each periggl interval still tends to scale
consider they interval [0.35,0.45]. Between the period like p2-7; if we replgce the Euler functions(p) in

3 interval and the perio@ interval there is a period E . .
; . g. (4) by the numerically observed numbenointervals
interval. Between th8 and the5 there is ar8, between : : : .
the 5 and the2 there is a7, and so on. Numerically we #(p) for Whlch a perlodp orbit maX|m|ze§<E7>,_ good
' : y agreement with Eq. (4) is restored. This is illustrated

find an exponential decrease, asncreases, of the total by the data represented as squares in Fig. 2. Another
length of they intervals with period at least (this can important point is that for Eq. (5) [as for Eq. (3)] we
be discerned from the data in Table I). Noting this andobserve an exponential decrease, as a functign of the
thinking of optimal nonperiodic orbits as being created inproportion of phase valuqsforwhi’ch (F.) is maximized
the limit as the Farey tree level approaches infinity [9] ’

infer that ootimal iodi bits tvpically d t’on an orbit of period at leagt. Thus the results that low
We Infer that optimal nonperiodic orbits typically do no period orbits most often are optimal and that the conjecture
occur on a positive Lebesgue measure seg.of

) i holds are apparently independent of our choicé of
The.form of Eq. (4)is ob'talned as f.OHOWS' The factor The above discussion has been for a one-dimensional
¢(p) is the number of times the integer appears

in th lete F ¢ carti t the | l ap. How do these results carry over into higher
In € complete rarey tree (star Ing at the lowest leve imensionality? To get some indication of the situation
with p, = p, = 1). The factorp2™? is obtained from

. . X . __we consider two different two-dimensional maps. First,
our numerical observations (and by direct analytlcak,ve discuss the Kaplan-Yorke map [11]
calculation in a special case) of how the width of an ’

interval scales with the periog.

What is the character of the sét, of y values for
which the optimal orbit is nonperiodic? From the above |
discussions$, has zero Lebesgue measure. On the basis of Y+l = Ay, + — sinQwx,). (6b)
our numerical evidence, we can show thiais a Cantor set 77
(in particular,S, is uncountable) whose fractal dimension The Lyapunov exponents are dnand InA. Choosing
is zero. Also, based on the Farey structure, we can show = 0.4 we have an information dimension 6f = 1.76
that wheny € S,, the nonperiodic orbit that maximizes for the attractor. Results for the optimal period with
(F,) has topological entropy zero. The above argumentghosen to be
are deferred to a future, longer publication [10].

Based on our numerical results we make a general Fo(x,y) = cof2m(x +y — y)] (7)
conjecture concerning typical maps with chaotic attractors
and typical smooth optimization functions with a  are shown in the second and third columns of Table II.
parameter dependence. Also, the scaling of the average size of thanterval on

Conjecture: Optimal nonperiodic orbits occur on a set which a given periogp orbit maximizesF, ) is shown by
of zero Lebesgue measure in the parameter spage of  the triangles in Fig. 2. These results offer further support

In the remainder of this paper, we present someor our conjecture.
further numerical results involving different choices of the  Next we consider the Hénon map
optimization functionF' and different dynamical systems

Xn+1 = 2x,(mod 1), (6a)

in support of the above conjecture and the principle that Xp+1 = a + by, — x2, (8a)
for most parametergF) is maximized by a low period
orbit. Other cases appear in [10]. Y+l = Xn, (8b)
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TABLE Il. Numerical results 2D maps. search), by the National Science Foundation (Divisions of
. Mathematical and Physical Sciences), and by the Office of
Kaplan-Yorke map (6) Hénon map (8) : . -
» £(p) oo (p) £(p) oo () Ngval Research. The numgncal computations reported in
this paper were made possible by a grant from the W. M.
2 0 0 0.421 0.424
3 0 0 0 0
4 0.140 0.188 0.0862 0.0857
5 0.223 0.326 0 0
6 0.127 0.139 0.00823 0.0352 . .
7 0.0768 0.0285 0.0415 0.0210 *Electronic address: bhunt@ipst.umd.edu
8 0.0466 0 0 0 [1] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. L&,
9 0.0524 0 0 0 1196 (1990).
10 0.0162 0 0 0 [2] J.C. Alexander, I. Kan, J.A. Yorke, and Z. You, Int.
11 0.0169 0 0 0 J. Bif. Chaos2, 795 (1992); E. Ott, J. C. Sommerer, J.C.
12 0.00518 0 0.00915 0 Alexander, I. Kan, and J.A. Yorke, Phys. Rev. Létd,
13 0.00750 0 0.00531 0 4134 (1993); J.C. Sommerer and E. Ott, Nature (London)
14 0.00274 0 0 0 365 136 (1993).
15 0.00158 0 0 0 [3] E. Oftt, J.C. Sommerer, J.C. Alexander, |. Kan, and J. A.
16—24 0.00214 0 0.00205 0 Yorke, Physica (Amsterdany)6D, 384 (1994).

[4] Another related situation occurs in the “bubbling transi-
tion” [5,6] first noted by Ashwin, Buescu, and Stewart
[5]. This transition is marked by the onset of temporally
intermittent bursting in the presence of small noise [see
Refs. [3,5] and the paper of N. Platt, S. M. Hammel, and

with the often studied parameter values= 1.4, b = 0.3.
The periodic orbits of this map were found using the

method of [12], and the function we averaged was J.F. Heagy, Phys. Rev. Left2, 3498 (1994)].
5] P. Ashwin, J. Buescu, and I. Stewart, Phys. Lettl
Fywy) =codm/D e +y -yl @  PILAN ys. Lenl®d

The results are given in the fourth and fifth columns of [6] S.C. Venkataramanet al. (to be published); Y.-C. Lai
Table II, and by the crosses in Fig. 2. Evidently the prin- __ €t al- (to be published). o

ciple that the optimum is typically achieved by low period [71 J-A. Yorke (private communication) has suggested that
orbits, and that near optimum performance can always be the bifurcation is typically mediated by a periodic orbit,

. X . and this conjecture is supported by this paper.
achieved by such orbits, continues to hold. [8] A different but related result has been obtained by B.R.

Finally, we note that in all the cases above, the Hunt and J.A. Yorke [Trans. Am. Math. S0825, 141
Farey tree structure we found in the prototype case  (1991)] who argue that a certain type of crisis bifurcation
of Egs. (2) and (3) is still partially present. In the of a chaotic attractor is typically mediated by a low period
examples, Egs. (5)—(9), we sometimes observe sudden unstable periodic orbit.
transitions betweer intervals corresponding to different [9] This line of argument is supported by the work of
low periods, but we still find that the high period K. Sigmund [Am. J. Math94, 31 (1972)], who proved
intervals are created by Farey summation (see [10]). The thatfor hyperbolic systems every invariant measure can be
important point is that this implies the appearance of  approximated arbitrarily well by thé-function measure
optimal nonperiodic orbits by the same Farey mechanis on a periodic orbit. .
as for Egs. (2) and (3), thus supporting our conjecturq‘lo] B.R. Hunt and E. Ott (to be published).

and indicating the general applicability of the behavior we 11] J.L. Kaplan and J.A. Yorke, ifrunctional Differential
9 9 PP y Equations and Approximation of Fixed Pointsedited
observed for Egs. (2) and (3).

i by H.-O. Peitgen and H.-O. Walter, Lecture Notes in

_ We thank H. Kaplan, A. Lopes, D. Mauldin, M. Rych- Mathematics Vol. 730 (Springer, Berlin, 1979), p. 204.

lik, J. Yorke, and L.-S. Young for helpful discussions. [12] 0. Biham and W. Wenzel, Phys. Rev. Le8, 819 (1989);
This research was supported by the U.S. Department of  see also P. Grassberger, H. Kantz, and U. Moenig, J. Phys.
Energy (Offices of Scientific Computing and Energy Re- A 22,5217 (1989).
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