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The electrons in a conductor surrounding an external magnetic field are acted on by a vector potential
that cannot be removed by a gauge transformation. Nevertheless, a macroscopic normal conductor can
experience no Aharonov-Bohm (AB) effect. That is proved by assuming only that a normal conductor
lacks off-diagonal long-range order (ODLRO), which means that the electrons lack long-range phase
coherence. Then by restricting the Hilbert space to density matrices which lack ODLRO, one can
introduce a restricted gauge transformation that removes the interaction of the conductor with the vector
potential. Consequently, the AB effect on a beam patrticle is not shielded by the conductor.

PACS numbers: 03.65.Bz, 03.65.Ca

The question has sometimes been raised as to whethgequencies to which the conductor would have to respond
the Aharonov-Bohm (AB) effect [1,2] can be shielded would be of the ordet0'* Hz, approaching plasmon fre-
by a conductor that surrounds the magnetic field, as imuencies in metals, and one may speculate that shielding
Fig. 1(a). The beam particle induces charges and currentsfects which may exist at lower frequencies would not
in the conductor. Those charges and currents may haveave been seen in the experiments performed to date be-
their own AB effect due to the contribution of thgirr A cause the conductors could not react quickly enough to
to the action integral, and that may compensate the ABhe fields created by the fast beam particles. Experiments
effect on the beam particle. with slower beam particles would perhaps have a bet-

There are also the more usual image charge antkr chance to exhibit shielding of the AB effect because
induced current effects, which have nothing to do withthere a close-coupling approximation, wherein the charge
any interaction between the conductor and the externand current distributions in the conductor follow the beam
magnetic field. Image charges and induced currents agarticle adiabatically around the conductor, should apply.
back on the beam particle and affect its motion. Thoséf such a phenomenon should exist for slower beam par-
effects are not considered here. They are negligibléicles, it might raise the possibility of using the AB effect
in current experiments on the AB effect. In addition, to probe properties of a macroscopic shield in some way
they are at least quadratic in the charge of the bearanalogous to the very productive experiments now done
particle, whereas the AB effect moves interference fringesvith mesoscopic circuits.
proportionally to the charge of the beam particle for small The answer appears to be no; there can be no such shield-
fields. (The limiting case of diffraction by a flux line ing effect by a macroscopic conductor for beam particles
of vanishing width is exceptional because the zero-fluxof any energy. That answer was given by Goldhaber [3],
diffraction vanishes in that limit.) both for normal and for superconducting conductors. For

Experimentally [2], we know that the AB effect is ob- superconducting shields, the key point is the flux quanti-
served at its full expected strength although the magnetization. In the presence of a superconducting shield, the
field is always surrounded by a conductor. However, thenagnetic flux must be a multiple @fc/2e, half of Lon-
beam particle typically has a velocity abo®'® cm/sec  don’s unit. However, the charge carriers have effectively
and the size of the scattering center is typically, so the charge2e. Therefore the AB phase shift of the supercon-
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AR The vector potentialA, assumed to be curl free every-
(RIS o .
SOOI where inside the conductor, is that due to the external
SRS AKNINI e .
SO A RLLEKS magnetic field (external in the sense that the sources of
.0 *
o

the magnetic field in the hole through the conductor are
treated as externally fixed quantities, not as dynamical
quantities governed by the Hamiltonian). Mutual mag-
netic interactions of the particles are to be expressed
as functions of their dynamical variableX, P, and S
are the coordinate, canonical momentum, and spin of the
beam particle.x;, p;, ands; are the coordinates, canoni-
cal momenta, and spins of all particles in the shield, elec-
trons and nuclei. For an electron, the chatger e; is
(a) negative.

The vector potential cannot be removed by a gauge
transformation, except for special values of the magnetic
flux ®, because it must obey
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The exceptional cases are those for which the flux obeys
b =n he 3

e

with integern.
b) If the conductor is simply connected, as in Fig. 1(b),
. _the interaction between the magnetic flux and the particles

FIG. 1. A conductor (shaded) surrounding a magnetic field, e conductor can be removed from the Hamiltonian by
regloln (bIaCk)'t éa) Intact, multiply connected, ring. - (b) Spiit, a gauge transformatioti in the standard way. Within the
SImply conneciee, fing- domain of the Hamiltonian, i.e., when the coordinates

lie within the split-ring conductor of Fig. 1(b),
ducting electrons2# X chargex flux, equals27 and

gives rise to no observable effect. WX, €,x;,&,1) = UV(X, €,xj,&5,1),
For normal shields, Goldhaber’s analysis relies upon _
specific and rather subtle dynamical properties of the U= l_[ U(x;),
conductor which may not be general. Here | give a I .
proof that relies only on the most general property of Ulx,) — p{ﬂf " Alr) - d ]' 4
normal matter, that it does not exhibit off-diagonal long- (%)) = ex fic (r) - dry, (4)

range order (ODLRO) [4]. The conduction electrons do

not have a coherent phase around the ring and therefo¥dere¢ and¢; are the values af; ands;.:

cannot exhibit any AB effect of their own. In other words,

the effects of the magnetic flux on the dynamics of the g, = UH U ! = H(X,P - iA(X),S,xj,pj,sj>.
conductor can be removed by a gauge transformation even ¢

though the vector potential cannot be removed by a gauge (5)
transformation. That statement has been made before [She interaction between the external field and the beam
in a speculative way. Here | shall prove it. particle is retained in Eq. (5) through(X).

To be gauge invariant, the Hamiltonian for the entire’ Tpe density operatgs, which along withH determines
system must have the form the dynamics, obeys

e; - -

Q) | Equivalently, the density matrix obeys

<X9 fsxla 517 . ~3XN5 §N|/_7(t)|X/s gls Xl]g{7 . -9X5\/7 f[/\/> = ‘7<X9 fsxla fls .. 'sXNs gNlp(t)lxls gls Xl]fi7 o 7X5\/9 f[lv> .
(7)
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[Following Ref. [4], the patrticles are, in effect, numbered,unitary operatoilU does not exist except for the values of
and the statistics are imposed through the symmetry of théhe magnetic flux that obey Eq. (3). For all other values
density matrix. For instance, if particles 1 and 2 are bottof the flux, the functionU(x;) is multiple valued, and
electrons, themp changes sign undéx,, £1) < (x2, £2), it cannot carry a wave function within the domain Bf
and the same is true of the primed variables.] into a second wave function within the domain Hf.
. o Similarly, V(x;, x}) is multiple valued and cannot carry an
V= 1‘[ V(x;,x}) = l_[exp[ﬁ[ ' A(r) - dr}. (8)  acceptable density matrix into a second acceptable density
j j he Jx, matrix. The multiple valuedness can be removed by
making a mathematical cut, for instance, at the azimuthal

For a simply connected conductor, Egs. (5) and (G)angleqs = 0, so that the line intggrals 0, become single
suffice to show that the action of the external magnetié’alued’ but then the wave functions become discontinuous
field on the particles in the conductor is removed by a2nd the domain problem does not go away.
gauge transformation, and therefore the external field has However, for a macroscopic normal conductor, the
no physical effect. For a multiply connected conductorProof can be rescued by restricting the space of the density

such as the one in Fig. 1(a), that proof fails because thEatrices to those which do not have ODLRO. Strictly,
| such density matrices obey

I IirTll (X, &,x1, &1 xw, Enlpl XD, €L X €L X, €)Y =0 9)
X;—X;l—=®
for eachj individually.

The density matrix used here is the full one for all the particles in the conductor, not one of the reduced few-particle
density matrices discussed in Ref. [4]. The existence of ODLRO in any of the reduced density matrices implies the
existence of ODLRO in the full density matrix. Then the absence of ODLRO in the full density matrix, expressed by
Eqg. (9), is necessary for the conductor to be normal. Equation (9) is a stronger condition than the absence of ODLRO
in the reduced one-particle density matrix for fermions [4], which is valid even for a superconductor, although Eq. (9) is
not valid for a superconductor. The difference is that the one-particle reduced density matrix is obtained from the full
density matrix by performing the trace with respect to the coordinates of all particles except panibige Eq. (9) is
true independently of those other coordinates.

I will take a macroscopic normal ring to be one for which

(X, €,x1, €1, xn, nlpl X €L (€1, Xy, €y) = 0 when |x; — x| > a for any j, (10)

where a is some length less than half the length of the shortest path through the conducting ring that encircles the
magnetic flux.
Now eachfij A(r) - drin Eqg. (4) can be made single valued by requiring the integration path to obey

Ir — x;| <a and |r— x;-l <a (11)

for every pair(xj,x}) which obeys|x; — x}l < a. ltis unnecessary to defirié for other pairs, because the density
matrix in Eq. (7) vanishes for all those pairs. Equations (7) and (8) define a single-valued densitygmatrigh is
gauge equivalent tp. There is no discontinuity problem becaysevanishes in the regions whefé has a jump in
phase.

The same trick can be played on the HamiltonkAn The gauge transformation
H=UHU"! (12)

does not exist in general because it creates a multiple-valued Hamiltonian that has no meaning, but in the truncated
space of density matrices that do not have ODLRO, that does not matter. The matrix elenfértarobe defined by
the restricted gauge transformation,

<X7 f’xla fl""’XN9 §N|H|X/’X/1’ f{""axj\/9 f[lv> = ‘7<Xa fvxly fla""XN’ §N|H|X/7 f/’x/la fi,-”»X;V» §1IV>9 (13)

they only multiply vanishing matrix elements of the density matrix. The multiple-valuedness problem has been
eliminated, and once again the interaction of the external magnetic field with the particles in the conductor has been
removed from the Hamiltonian and the density matrix.

The assumption that the density matrix exhibits no off-diagonal long-range order at any time implies the assumption
that the Schrodinger equation

2209



VOLUME 76, NUMBER 13 PHYSICAL REVIEW LETTERS 25 MRcH 1996

Nuclear Physics Division, under Contract W-31-109-

.0
ih a_[; =[H,p] (14)  ENnG-38.

preserves the absence of ODLRO. This proof would

therefore not apply to the unlikely situation where the pas-  *Electronic address: peshkin@anl.gov
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