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Unsupervised Learning by Examples: On-line versus Off-line
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We study both on-line and off-line unsupervised learning fromp random patterns which are uniformly
distributed on theN-sphere with the exception of a single symmetry breaking orientationB, along which
they may be arbitrarily distributed. Supervised learning from the same kind of patterns is includ
a special case. In the thermodynamic limitN ! ` with a ­ pyN fixed we calculate the overlap
Rsad ­ B ? JyjJj jBj between the unknown “true”B and the optimal “Bayes” hypothesisJ with
particular emphasis on the small and largea asymptotics and the phenomenon of retarded learni
Finally, we identify a cost function whose minimum reproduces the off-line Bayes overlap.

PACS numbers: 87.10.+e, 02.50.–r, 05.20.–y
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Over the last decade, networks that can learn
examples have been investigated theoretically by apply
a formalism similar to that of statistical mechanic
Typically, the network is trained off-line by minimizatio
of a cost function which incorporates the informatio
about the whole training set [1–8]. More recently, ve
interesting results have been obtained for on-line learn
a step-wise learning procedure in which the traini
examples are presented only once and in a seque
order [9–12]. It turns out that the analytic calculations f
this case are rather simple, with an optimal performa
often close to that for off-line learning, while its practic
implementation is straightforward. Most off-line and a
on-line theoretical calculations have been restricted
the case of supervised learning, a scenario in whic
set of training patterns together with their correspond
classifications are given. In this Letter, we present res
for unsupervisedlearning, both on-line and off-line
including the supervised scenario as a special case.
mainly focus on Bayes learning, defined as the situatio
which the available information is used optimally, becau
the on-line and off-line versions are then closely rela
and give similar results. Additionally, we identify a co
function with a unique minimum that reproduces the res
of off-line Bayes learning. It sheds light on the relatio
between the on-line and off-line Bayes solutions.

We consider the following unsupervised problem. P
terns j are sampled independently from a nonunifo
distribution PBsj d with a single symmetry breaking ori
entationB. Without loss of generality we can choose t
length of j , B, and otherN-dimensional vectors equa
to

p
N, with N the dimensionality of the pattern spac

Furthermore, the axial symmetry aroundB implies that
PBsj d is proportional toe2Usbddsj2 2 Nd, whereUsbd
describes the modulation of the pattern density as a fu
tion of the overlapb ­ j ? By

p
N . In the limit N ! `,

the distributionP sbd of this overlap takes on the follow
ing form:

P sbd ­
N

p
2p

e2b2y22Usbd, (1)
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where N is a normalization constant. Our aim is t
construct an estimateJ of the unknown orientationB on
the basis of a training set ofp patternshj jp

m­1 sampled
independently fromPBsj d under the assumption that th
function Usbd in (1) is exactly known. The quality of
a hypothesisJ will be measured by its overlapR ­ J ?

ByN with the true orientationB. The case of supervised
learning from a teacher, coinciding withB, and providing,
in addition, a binary classificationj

m
0 ­ sgnf fsjm ?

By
p

Ndg of each patternjm, can be transformed into the
unsupervised scenario by estimating the orientation ofB
from the “aligned” patternsjmj

m
0 . This transformation

is exact providedfsld is an odd function, i.e., the
additional knowledge of the classificationsj

m
0 does not

allow a better guess ofB than thejmj
m
0 alone [13]. The

distribution of the aligned patterns is given by

P̃ sbd ­ fP sbd 1 P s2bdgQsss fsbdddd , (2)

whereQsxd is the Heaviside function.
In on-line learning, the estimated orientationJ is

updated, upon presentation of a new patternj , to a new
oneJ 0 as follows:

J0 ­
q

NysJ 1 Fjy
p

N d2 sJ 1 Fjy
p

N d . (3)

The prefactor on the right hand side (r.h.s.) of Eq. (
guarantees thatjJ0j2 ­ N . The meaning of the amplitude
F, with which the new patternj contributes to the
reorientation ofJ, can be clarified by multiplying both
sides in Eq. (3) byjy

p
N . Keeping terms to dominant

order inN, one concludes thatF ­ l 2 t, wherel and
t are the overlap of the patternj after and prior to
“learning”: l ­ J0 ? jy

p
N andt ­ J ? jy

p
N .

To identify the optimal choice ofF, corresponding
to “Bayes on-line learning,” we multiply both sides in
Eq. (3) with B, and find that the increase in overla
DR ­ sJ0 2 Jd ? ByN is maximal for F ­ byR 2 t
with b ­ B ? jy

p
N. The latter quantity, however, is no

available. To realize, on average, a maximal increase
the overlap, the best one can do is to use the conditio
© 1996 The American Physical Society
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average ofb, calculated on the basis of all the availab
information, in this case the value of the overlapt prior to
learning,

FoptsR, td ­ R21kb j tl 2 t , (4)

with kb j tl ­
R

bPsb j td db. With this choice of the
learning amplitude, one finds in the continuous limitp !

`, N ! ` with a ­ pyN finite, that the Bayes overlap
R ­ Rsad becomes a self-averaging quantity and i
evolution dRyda is given by sRy2d

R
FoptsR, td2Pstd dt.

In order to complete these formulas, we invoke th
cylindrical symmetry around theB axis. It follows that
Pst j bd is a Gaussian distribution with averagekt j bl ­
bR and dispersion1 2 R2. One thus obtains the joint
probability distributionPsb, td ­ Pst j bdP sbd and from
it the distributions Pstd ­

R
Psb, td db and Psb j td ­

Psb, tdyPstd. The evolution equation forR can then be
rewritten explicitly as follows:

dR2

da
­ s1 2 R2d

Z
D t

h
R

D t0 t0N e2UsRt1
p

12R2 t0dj2R
D t0 N e2UsRt1

p
12R2 t0d

,

(5)

whereD t ­ dte2t2y2y
p

2p. SinceUsbd is assumed to
be known, Rsad can be determined from (5) (supple
mented with the appropriate initial condition), and ca
be used during a practical implementation of Bayes o
line learning; cf. (4). We finally note that (5) recursivel
guarantees the existence of all derivatives ofRsad, and
therefore so-called phase transitions [12–14] will nev
occur in this learning scenario.

Before turning to a general discussion of (4) and (5
we mention the results for a few particular cases of i
terest. Consider supervised learning from a uniform d
tribution of patterns classified by a teacher perceptro
The distribution of aligned patterns is given bỹP sbd ­
2e2b2y2Qsbdy

p
2p. The results obtained from Bayes su

pervised on-line learning [9] are then recovered from o
on-line unsupervised equations (4) and (5). Second,
consider a nonuniform distribution for which the calcula
tions are particularly simple,Usbd ­ 2ab2y2. One finds
that Fopt ­ s1 2 R2datysaR2 2 a 2 1d is linear in t
and dRyda ­ a2Rs1 2 R2d2y2s1 1 ad sa 1 a 2 aR2d.
This example illustrates two features that will be obtain
in a more general setting below. First, on-line learnin
from scratch is impossible for the distribution under co
sideration: Rsa ­ 0d ­ 0 ! Rsad ; 0, ; a. Second,
for Rsa ­ 0d . 0, one finds a rather slow asymptotic ap
proach in thea ! ` limit, R

a!`
! 1 2 s1 1 ady2a2a.

We now derive general results valid in the sma
or large a limit. One readily sees that the integra
on the r.h.s. of (5) can be expanded aboutR ­ 0 as
kbl2 1 OsR2d, wherekbl ­

R
bP sbd db. For kbl fi 0 it

follows thatRsad ­
p

akbl2 for asymptotically smalla.
Similarly, one finds thatFopt ­ kblyR and thusFopt ­
sgnkbl

p
Nyp, showing that Bayes on-line learning (3

coincides with the Hebb rule,J ,
Pp

m­1 jm, in this limit.
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On the other hand, forkbl ­ 0 we can conclude that
Rsad ; 0; i.e., any kind of on-line learning from scratc
necessarily fails.

Turning to largea, one obtains, by a straightforward
expansion of (5) aroundR ­ 1, the following asymptotic
behavior:

Rsad ­ 1 2

∑
2a

Z
U 0sbd2P sbd db

∏21

, (6)

provided the integral in the r.h.s. of (6) converges. A
expected, a more pronounced structure in the patt
distribution [largeU 0sbd] facilitates Bayes on-line learn-
ing. Regarding singular derivativesU 0sbd we restrict our-
selves to a particularly interesting special case: Assu
thatP sbd ­ 0 for b , b1, P sbd smooth forb . b1, and
limb!1b1 P sbd ­ DP . 0, a situation which typically
occurs in supervised problems; cf. (2). By closer inspe
tion one then finds that in the region oft and t0 values
which, for R ! 1, contribute notably to the integral in
(5), expf2Ustdg, with t ­ Rt 1

p
1 2 R2 t0, can be re-

placed by expf2Usb1dgQst 2 b1d. This yields the lead-
ing order asymptotics

Rsad ­ 1 2 4p

∑
aDP

Z
D t e2t2y2Hstd21

∏22

, (7)

where Hstd ­
R`

t Dt0. More general discontinuities o
P sbd lead again to ana22 decay with similar coefficients.
By comparison of (6) and (7), one concludes that it
easier to estimate the orientationB for discontinuous than
for smooth pattern distributions at largea. Furthermore,
the large-a on-line Bayes learning in the discontinuou
case (7) is completely dominated by the examples clos
the discontinuities of the relevant pattern distribution [i.e
P sbd for unsupervised and̃P sbd from (2) for supervised
learning]. A smoothening of these discontinuities, e.
due to a “noisy teacher,” gives rise to a finite1ya

coefficient in (6) and thus significantly undermines th
progress of a “master student.”

Next we address off-line Bayes learning. The calcu
tions in this case are more involved and are only sketch
while relying on the general formalism presented in [13
Given a training sethjmjp

m­1 it follows from the “Bayes
rule” [13,14] that, for a uniform prior distribution on
B, the a posteriori probability for a hypothesisJ to
coincide with the unknown “true”B is proportional toQp

m­1 PJsjmd. Sampling at random aJ vector accord-
ing to this distribution is known as Gibbs learning an
the corresponding overlapRGsad can be obtained by a
standard replica calculation [13]. According to a gene
argument given in [14] the maximal overlapR that can be
achieved on the basis of the information contained in
training set is given byR ­

p
RG. This overlap is real-

ized by the weighted center of mass of thea posteriori
probability. After manipulations, one finally obtains th
2189
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following closed equation for this so-called Bayes off-lin
overlap [15]:

R2 ­ a
Z

D t
h
R

D t0t0N e2UsRt1
p

12R2 t0dj2R
D t0N e2UsRt1

p
12R2 t0d

, (8)

showing a remarkable similarity with (5). While Baye
on-line learning (1)–(5) leads to the best possible hypo
esis J under the extra condition of sequential updatin
one may wonder under which conditions it saturates t
Bayes off-line limit. One verifies that (5) and (8) are sa
isfied simultaneously; a only for the trivial case of a
linear Usbd, resulting in Hebbian learning. Yet on-line
and off-line, in fact, give remarkably similar results for
generalUsbd in the small and largea regimes, as we now
proceed to show.

To extract the small and largea asymptotics from
(8) one can use the same arguments as for (5).
small a one finds that the leading order behavior o
Bayes limit on-line and off-line are identical. It follows
that the Hebb rule saturates the Bayes off-line limit f
asymptotically smalla. This observation has been mad
previously for several special cases but its general valid
is demonstrated here for the first time. As before, s
called retarded learning [12,16,17], i.e.,Rsad ­ 0 for
a small, occurs if and only ifkbl ­ 0. In contrast
to the on-line case, however, the off-line retardatio
extends only up to a finitea value [18]. For example,
the previously discussed modelUsbd ­ 2ab2y2 gives
rise to Rsad ­ 0 for a , s1 1 ad2ya2 and Rsad ­p

fa 2 s1 1 ad2ya2gyfa 2 s1 1 adyag for larger values
of a; cf. also Eq. (53) in [13].

Let us now turn to the largea behavior. One finds
the surprising result that for smooth pattern distributio
the asymptotic behavior of the off-line Bayes limit i
identical to the one for on-line; cf. (6). For discon
tinuous pattern distributions, on the other hand, Bay
limit off-line uses the examples “twice as efficiently,
Roff-linesad ­ Ron-lines2ad, with the on-line result given
by (7). The latter simple relationship was already observ
for several specific scenarios in supervised learning [9,
19–21], but remains valid in the context of unsupervis
learning only for learning from a discontinuous distribu
tion. Apparently, the asymptotic difference between o
line and off-line Bayes limits becomes more important
the learning task becomes easier. As a further illustrat
of this point, we mention that for a pattern distribution wit
a delta peak, e.g.,P sbd ­ dsb 2 b0d, the off-line Bayes
limit reachesR ­ 1 at the finite valuea ­ 1, while the
approach ofR to 1 is only exponential in the limita ! `

for on-line.
The a22 decay in (7) for the overlap is familiar

from supervised perceptron learning. In the standa
student teacher perceptron supervised scenariof fsxd ­
x and Usbd ­ 0g, the aligned pattern distribution is
discontinuous, and the resulting generalization errore

approaches 0 fora ! ` as
p

1 2 R , a21. The slow
2190
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a21 approach ofR to 1 for smooth distributions [cf. (6)]
may look surprising in view of the Vapnik-Chervonenk
(VC) bound´ , ln aya [22]. This asymptotic behavior
will apply in the case of a student perceptronJ learning
from a teacher perceptronB by examples generated wit
a probability distributionP sbd that goes sufficiently fast
to zero for b ! 0, such that the distributionP̃ sbd for
the equivalent unsupervised problem (2) becomes smo
There is, however, no contradiction with the VC boun
because the generalization error has to be calculated
respect to the very same distribution that generates
training examples. Hence the student is evaluated mo
on easy questions (examples far from the decision pla
The decrease ofe becomes faster than

p
1 2 R and is

found to obey the VC bound.
Finally, we turn to the identification of the Bayes ve

tor as the minimum of anad hoccost functionEsJd ­Pp
m­1 V sJ ? jmy

p
N d, thereby generalizing a result ob

tained recently for supervised learning from a teach
perceptron [20]. The overlapR between the minimum
J of EsJd andB can be obtained for a general potenti
V and a general pattern distributionP as the solution
of the following equations forR and x [cf. Eq. (17) in
[13]: Z

D tfl0st, xd 2 tg2XsR, td ­ s1 2 R2dya ,Z
D tfl0st, xd 2 tgY sR, td ­ Rya ,

(9)

with XsR, td ­
R

D t0N e2UsRt1
p

12R2 t0d, Y sR, td ­R
D t0t0N e2UsRt1

p
12R2 t0dy

p
1 2 R2, and l0 the func-

tion of t and x that extremizesV sld 1 sl 2 td2y2x.
The meaning ofl0 can be clarified by the application
of the cavity method (cf. [7,23]) as the overlap of
patternjm with the J vector after learning this pattern
as a function of the overlapt prior to learning. In
view of the similar meaning of the amplitude facto
F in on-line learning, it is tempting to introduce th
analogous off-line quantityF ­ l0 2 t ­ 2xV 0sl0d.
From (9), one gets

R2

1 2 R2
­ a

kYFl2

kXF2l
­ a

ksY2yXdXFyYl2

ksY2yXd sXFyY d2l
, (10)

where the average is with respect to the Gaussian m
sure D t. It is easy to verify, e.g., on the basis of th
Schwartz inequality, thatkuyl2 # kul kuy2l for any func-
tion u . 0, with the equality sign attained only fory
constant with respect to the variables over which the
erage is being taken. It follows that the r.h.s. of (10
and hence also the value ofR, is maximal for the choice
Fopt ­ CYyX, whereC is a constant independent oft.
Its value can be determined from (9):C ­ s1 2 R2dyR.
By filling in the explicit forms ofX, Y , andC, one ver-
ifies that Fopt is identical to the result (4) found in on
line learning. Furthermore, the r.h.s. of (10) simplifi
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to akY2yXl, so that (10) becomes identical to (8), th
equation for the off-line Bayes limit. Hence, we hav
identified a cost functionE through the explicit form
of Fopt, whose unique minimum reproduces the off-lin
Bayes result. The identity ofFopt for the Bayes limit on-
line and off-line sheds light on the relation between bo
solutions. The Bayes limit off-line is such that, upon re
moving any of the learned patterns, the relearning of th
pattern is optimal in the on-line sense. Furthermore, t
is true for all of the learned patterns in off-line, wherea
it only holds for the last pattern in on-line. We finally
describe how the explicit form of the optimal cost func
tion can be constructed. The functionl0

opt ­ Fopt 1 t
is monotonically increasing function oft, going from
lmin to lmax, for any valueR [g0, 1f and any choice
of Usbd. Hence, the inverse functiontoptsld is well de-
fined in the intervalI ­ flmin, lmaxg. We construct a po-
tential Vopt by integration ofV 0

optsld ­ ftoptsld 2 lgyx
for l [ I and Voptsld ­ 1` otherwise. The choice of
the proportionality factorx is related to the speed o
covergence of a gradient descent algorithm on the c
function E. Since it does not modify the location o
the minimum ofE, its value is left undetermined. It is
clear from the above construction that, with a few e
ceptions like a linearUsbd, Voptsld depends ona, and
closed analytical expressions can only be obtained in s
cial cases. However, the small and largea behavior
can be extracted, revealing which learning strategies
Bayes optimal in these limits. For asymptotically sma
a one findsVoptsld ­ 2l, which is equivalent to the
Hebb rule, is agreement with out previous results. F
asymptotically largea and smooth pattern distributions
P sbd governed by (6),Voptsld ­ Usld, so that minimiz-
ing E becomes equivalent to maximizing thea posteriori
probability

Qp
m­1 PJsjmd [13,14]. In other words, max-

imal likelihood learning is Bayes optimal in the largea

regime.
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