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Unsupervised Learning by Examples: On-line versus Off-line

C. Van den Broeck and P. Reimann*

Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium
(Received 31 October 1995

We study both on-line and off-line unsupervised learning fprandom patterns which are uniformly
distributed on theN-sphere with the exception of a single symmetry breaking orientdicaong which
they may be arbitrarily distributed. Supervised learning from the same kind of patterns is included as
a special case. In the thermodynamic limit— « with « = p/N fixed we calculate the overlap
R(a) = B - J/|J||B| between the unknown “trueB and the optimal “Bayes” hypothesi with
particular emphasis on the small and largeasymptotics and the phenomenon of retarded learning.
Finally, we identify a cost function whose minimum reproduces the off-line Bayes overlap.

PACS numbers: 87.10.+e, 02.50.—r, 05.20.—y

Over the last decade, networks that can learn byhere /N is a normalization constant. Our aim is to
examples have been investigated theoretically by applyingonstruct an estimatg of the unknown orientatioB on
a formalism similar to that of statistical mechanics.the basis of a training set of patterns{f}zzl sampled
Typically, the network is trained off-line by minimization independently fromPz(&) under the assumption that the
of a cost function which incorporates the informationfunction U(b) in (1) is exactly known. The quality of
about the whole training set [1-8]. More recently, verya hypothesis/ will be measured by its overlaR = J -
interesting results have been obtained for on-line learningB /N with the true orientatioB. The case of supervised
a step-wise learning procedure in which the traininglearning from a teacher, coinciding wi, and providing,
examples are presented only once and in a sequentiad addition, a binary classificatiort) = sgr f(&* -
order [9—12]. It turns out that the analytic calculations for B/+/N)] of each patterr&#, can be transformed into the
this case are rather simple, with an optimal performance@nsupervised scenario by estimating the orientatio® of
often close to that for off-line learning, while its practical from the “aligned” patterng*£;. This transformation
implementation is straightforward. Most off-line and all is exact providedf(A) is an odd function, i.e., the
on-line theoretical calculations have been restricted tadditional knowledge of the classificatiogg does not
the case of supervised learning, a scenario in which allow a better guess a8 than the£* &} alone [13]. The
set of training patterns together with their correspondinglistribution of the aligned patterns is given by
classifications are given. In this Letter, we present results 5
for unsupervisedlearning, both on-line and off-line, P) =[P) + P(=b)IO(f(b)), 2
including the supervised scenario as a special case. We
mainly focus on Bayes learning, defined as the situation invhere® (x) is the Heaviside function.
which the available information is used optimally, because In on-line learning, the estimated orientatigh is
the on-line and off-line versions are then closely relatedupdated, upon presentation of a new pattérno a new
and give similar results. Additionally, we identify a cost oneJ’ as follows:
function with a uniqgue minimum that reproduces the result
of off-line Bayes learning. It sheds light on the relation J = \/N/(J + FE/NN2(J + FE/N). ()
between the on-line and off-line Bayes solutions.

We consider the following unsupervised problem. PatThe prefactor on the right hand side (r.h.s.) of Eq. (3)
terns £ are sampled independently from a nonuniformguarantees thay’|> = N. The meaning of the amplitude
distribution P5(£€) with a single symmetry breaking ori- F, with which the new patterné contributes to the
entationB. Without loss of generality we can choose thereorientation ofJ, can be clarified by multiplying both
length of £, B, and otherN-dimensional vectors equal sides in Eq. (3) byé/+/N. Keeping terms to dominant
to /N, with N the dimensionality of the pattern space. order inN, one concludes thaf = A — r, where and
Furthermore, the axial symmetry aroudtlimplies that ; are the overlap of the patter§ after and prior to
Py(£) is proportional toe V) §(£2 — N), whereU(b)  “learning”: A = J'- &/</N andt = J - &/+/N.
describes the modulation of the pattern density as a func- To identify the optimal choice off, corresponding
tion of the overlaph = £ - B/+/N. Inthe limitN — «,  to “Bayes on-line learning,” we multiply both sides in
the distribution’(b) of this overlap takes on the follow- Eq. (3) with B, and find that the increase in overlap

ing form: AR =(J' = J) - B/N is maximal for F =b/R — ¢
with b = B - £/</N. The latter quantity, however, is not
P(b) = ﬂ_ o b/2-Ub) 1) available. To realize, on average, a maximal increase of
27 ’ the overlap, the best one can do is to use the conditional
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average ofb, calculated on the basis of all the available On the other hand, fofb) = 0 we can conclude that
information, in this case the value of the overlapriorto  R(a) = 0; i.e., any kind of on-line learning from scratch
learning, necessarily fails.
0 Turning to largea, one obtains, by a straightforward
Fop(R,1) = R™ b 1) — 1, (4)  expansion of (5) aroun@t = 1, the following asymptotic

with (b |1y = [bP(b|1)db. With this choice of the Pehavior:

learning amplitude, one finds in the continuous lipit— _1

©, N — o with « = p/N finite, that the Bayes overlap oy 12

R = R(a) becomes a self-averaging quantity and its Rla) =1 [2a] Uib) T(b)db} ’ (©)
evolutiondR /de is given by (R/2) [ Fop (R, 1)*P(t) dt.

In order to complete these formulas, we invoke theprovided the integral in the r.h.s. of (6) converges. As
cylindrical symmetry around th® axis. It follows that expected, a more pronounced structure in the pattern
P(t|b) is a Gaussian distribution with averagel b) =  distribution [largeU’(b)] facilitates Bayes on-line learn-
bR and dispersionl — R%2. One thus obtains the joint ing. Regarding singular derivativég(b) we restrict our-
probability distributionP(b,1) = P(¢t|b)P(b) and from selves to a particularly interesting special case: Assume

it the distributionsP(r) = [P(b,1)db and P(b|t) = thatP(b) = 0for b < by, P(b) smooth forb > by, and
P(b,1)/P(t). The evolution equation foR can then be lim,—., P(b) = AP > 0, a situation which typically
rewritten explicitly as follows: occurs in supervised problems; cf. (2). By closer inspec-
) /o —UR+VT=RE N2 tion one then finds that in the region ofand ' values
dr” _ (1 — R2)f Dy {/ D't Ne — } . which, for R — 1, contribute notably to the integral in
de | Di' N e~ URHVIZR ) (5), exd—U(7)], with 7 = Rt + /1 — RZ#, can be re-

) placed by exp-U(5)]0(r — by). This yields the lead-

where Dt = dte "/2/\/2m. SinceU(b) is assumed to ing order asymptotics
be known, R(a) can be determined from (5) (supple-
mented with the appropriate initial condition), and can
be used during a practical implementation of Bayes on-
line learning; cf. (4). We finally note that (5) recursively
guarantees the existence of all derivativesRgf), and where H(z) = foo Dt'. More general discontinuities of
therefqre sp—callqd phase tr'ansitions [12—14] will Neverp ;) lead againrto am 2 decay with similar coefficients.
occur in this learning scenario. _ By comparison of (6) and (7), one concludes that it is

Before turning to a general discussion of (4) and (5).asier to estimate the orientatidnfor discontinuous than
we mention the results for a few particular cases of intor smooth pattern distributions at large Furthermore,
terest. Consider supervised learning from a uniform disspo largeer on-line Bayes learning in the discontinuous
tribution of patterns classified by a teacher perceptrongase (7) is completely dominated by the examples close to
Th_eb2d|zstr|but|oru)f aligned patterns is given t(b) =  he discontinuities of the relevant pattern distribution [i.e.,
2e _/ ®(b)/_\/277- The results obtained from Bayes su- p(;) for unsupervised an@® () from (2) for supervised
pervised on-line learning [9] are then recovered from oufigarning]. A smoothening of these discontinuities, e.g.,
on-line unsupervised equations (4) and (5). Second, Wg,e to a “noisy teacher,” gives rise to a finite/a
consider a nonuniform distribution for which the calcula- gefficient in (6) and thus significantly undermines the
tions are particularly simpld/(b) = —ab?/2. One finds progress of a “master student.”
that Fope = (1 — Rz)‘”/(asz2 —a — 1) is linear n Next we address off-line Bayes learning. The calcula-
anddR/da = a®R(1 — R*?/2(1 + a)(a + a = aR?). " 1ions in this case are more involved and are only sketched,
This example illustrates two features that will be obtainedyile relying on the general formalism presented in [13].
in a more general setting below. First, on-line learninggijyen a training sef£~}._, it follows from the “Bayes
from scratch is impossible for the distribution under con-yje” [13,14] that, for g uniform prior distribution on
sideration: R(a = 0) = 0 — R(a) =0, Ya. Second, p ihe a posteriori probability for a hypothesis/ to
for R(e = 0) > 0, one finds S_ffther slow asymptotic ap- cgincide with the unknown “true’B is proportional to
proach in thex — o limit, R "— 1 — (1 + a)/2a*a. h.—1 P;(£*). Sampling at random d vector accord-

We now derive general results valid in the smalling to this distribution is known as Gibbs learning and
or large a limit. One readily sees that the integral the corresponding over|aﬁG(a) can be obtained by a
on the r.h.s. of (5) can be expanded ab&t= 0 as  standard replica calculation [13]. According to a general
(b)* + O(R?), where(b) = [bP(b)db. For(b) # 0it  argument given in [14] the maximal overl&pthat can be
follows thatR(a) = /a(b)? for asymptotically smallkv.  achieved on the basis of the information contained in the
Similarly, one finds that,,, = (b)/R and thusF.,x =  training set is given by = \/Rg. This overlap is real-
sgnb)y/N/p, showing that Bayes on-line learning (3) ized by the weighted center of mass of thgosteriori
coincides with the Hebb rulgf, ~ Zﬁzl &*,inthis limit.  probability. After manipulations, one finally obtains the
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following closed equation for this so-called Bayes off-line « ~! approach oR to 1 for smooth distributions [cf. (6)]
overlap [15]: may look surprising in view of the Vapnik-Chervonenkis
(VC) bounde < In a/a [22]. This asymptotic behavior
will apply in the case of a student perceptrgriearning
from a teacher perceptraB by examples generated with
a probability distribution? () that goes sufficiently fast
showing a remarkable similarity with (5). While Bayes to zero for b — 0, such that the distributior’(») for
on-line learning (1)—(5) leads to the best possible hypoththe equivalent unsupervised problem (2) becomes smooth.
esis J under the extra condition of sequential updating,There is, however, no contradiction with the VC bound
one may wonder under which conditions it saturates théecause the generalization error has to be calculated with
Bayes off-line limit. One verifies that (5) and (8) are sat-respect to the very same distribution that generates the
isfied simultaneously « only for the trivial case of a training examples. Hence the student is evaluated mostly
linear U(b), resulting in Hebbian learning. Yet on-line on easy questions (examples far from the decision plane).
and off-line, in fact, give remarkably similar results for a The decrease oé becomes faster thag'l — R and is
generalU (b) in the small and large: regimes, as we now found to obey the VC bound.
proceed to show. Finally, we turn to the identification of the Bayes vec-
To extract the small and large asymptotics from tor as the minimum of amd hoccost functionE(J) =
(8) one can use the same arguments as for (5). F()ZZ=1V(J - £*/4/N), thereby generalizing a result ob-
small « one finds that the leading order behavior oftained recently for supervised learning from a teacher
Bayes limit on-line and off-line are identical. It follows perceptron [20]. The overlag between the minimum
that the Hebb rule saturates the Bayes off-line limit forJ of E(J) and B can be obtained for a general potential
asymptotically smalke. This observation has been madeV and a general pattern distributidR as the solution
previously for several special cases but its general validitpf the following equations foR andx [cf. Eg. (17) in
is demonstrated here for the first time. As before, so{13]:
called retarded learning [12,16,17], i.&R(a) = 0O for

141 —U(Rt++v1—R2t'N\2
Rzzath{tht.Ne }, ®)

f DN e URt+V1-R>1")

« small, occurs if and only if(h) = 0. In contrast th[/\O(r,x) — tPXR, 1) =1 — R?)/a,

to the on-line case, however, the off-line retardation

extends only up to a finitex value [18]. For example, f 0 B _ C)]
the previously discussed modél(h) = —ab?/2 gives DeAN(t,x) = 1]¥(R.1) = R/a,

rise to R(a) =0 for @ < (1 + a)’/a®> and R(a) =

Jla = (1 + a)?/a?]/la — (1 + a)/a] for larger values with  X(R,1) = [ D' N e URHVIZR!)  y(R ) =

of «; cf. also Eq. (53) in [13]. [ DN e VRAVI-R )/ /T "R2 and A° the func-
Let us now turn to the larger behavior. One finds tion of ¢+ and x that extremizesV(A) + (A — 1)?/2x.

the surprising result that for smooth pattern distributionsthe meaning ofA° can be clarified by the application

the asymptotic behavior of the off-line Bayes limit is of the cavity method (cf. [7,23]) as the overlap of a

identical to the one for on-line; cf. (6). For discon- pattern£# with the J vector after learning this pattern

tinuous pattern distributions, on the other hand, Bayegs a function of the overlap prior to learning. In

limit off-line uses the examples “twice as efficiently,” view of the similar meaning of the amplitude factor

Rofr-tine (@) = Ron-1ine(2r), With the on-line result given F in on-line learning, it is tempting to introduce the
by (7). The latter simple relationship was already observe@dnalogous off-line quantityF = A° — t = —xV'(A°).

for several specific scenarios in supervised learning [9,13rrom (9), one gets

19-21], but remains valid in the context of unsupervised

learning only for learning from a discontinuous distribu- R? (YF)? (Y?/X)XF/Y)

tion. Apparently, the asymptotic difference between on- 77 —"g2 T % (xp2y T Y ((y2/x) (XF/Y)2)

line and off-line Bayes limits becomes more important as

the learning task becomes easier. As a further illustratiomhere the average is with respect to the Gaussian mea-

of this point, we mention that for a pattern distribution with sure D¢. It is easy to verify, e.g., on the basis of the

a delta peak, e.gP(b) = 8(b — by), the off-line Bayes Schwartz inequality, thauv)* = (u)(uv?) for any func-

limit reachesR = 1 at the finite valuew = 1, while the tion u > 0, with the equality sign attained only fow

approach oRR to 1 is only exponential in the limig — constant with respect to the variables over which the av-

for on-line. erage is being taken. It follows that the r.h.s. of (10),
The =% decay in (7) for the overlap is familiar and hence also the value Bf is maximal for the choice

from supervised perceptron learning. In the standard’,, = CY/X, whereC is a constant independent of

student teacher perceptron supervised scerafi@) =  Its value can be determined from (¥):= (1 — R?)/R.

x and U(b) = 0], the aligned pattern distribution is By filling in the explicit forms ofX, Y, andC, one ver-

discontinuous, and the resulting generalization ewor ifies thatF,, is identical to the result (4) found in on-

approaches 0 fow — % as+/1 — R ~ a«~!'. The slow line learning. Furthermore, the r.h.s. of (10) simplifies
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