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Novel Approach to the Analysis of Broadband Dielectric Spectra
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Broadband dielectric spectra are usually fitted to a superposition of contributions from one or
several parametrized processes (Debye, Havriliak-Negami, etc.). This work proposes instead to extract
continuous distributions of relaxation times from complex dielectric spectra by solving a Fredholm
integral equation using the Tikhonov regularization technique with a self-consistent choice of the
regularization parameter. This method is stable with respect to the noise and resolves multiple
dynamical processes. An experimental example of salol adsorbed on microporous glass is analyzed.

PACS numbers: 77.22.Gm, 02.30.Rz

Broadband dielectric spectroscogy0 2-10° Hz) is  superposition methods [5] correspond to line shapes with
widely used to study molecular dynamics in complex sysseveral symmetrically or asymmetrically broadened peaks
tems such as glass-forming liquids and liquid crystallineof g(7). Unfortunately, direct extraction of(7) from
materials (e.g., [L—4]). Sample polarization in an externak™(w) is a mathematically ill-posed problem [6—8]. This
electric field depends both on geometrical factors and odifficulty may be one of the reasons why the spectra are
the mobility of molecular segments, molecules, or clus-usually treated as superpositions of a few parametrized
ters of molecules. From the dielectric response one cafunctions. If a direct calculation of(r) from &*(w)
obtain dipolar strengths, dielectric losses, and correlationould be performed reliably, in a manner similar to
times of the relaxation processes present in the system. the Fourier transformation between time and frequency

A single Debye process has the following well-known domains, then several problems arising from the use of
frequency dependence of the complex dielectric permitempirical functions could be avoided. Having obtained

tivity e* = &' — ig”: g(7), one could then seek a physical interpretation in the
e — & As 7 domain rather than in the frequency domain.
¥ (w) — £ = 0= _ —, 1) Attempts to develop a suitable numerical algorithm
1 +iwT 1l +iwT

have been made previously, e.g., Tschoegl's second ap-
where 7 is the relaxation time., is the static (dc) proximation method [9] and the histogram method of
permittivity, ande = e(w — ). In practice, one often |manishi, Adachi, and Kotaka [10]. However, the ambi-
observes a superposition of several relaxation processgsiity of the extracteg(7), which arises from the ill-posed
with different 7 values, or even a continuous distribution nature of the problem, has not yet been satisfactorily re-
of relaxation times. The spectra may also contain featuresolved. In this work, we present an algorithm which can
due to cooperative relaxation phenomena, e.g., in glasgxtractg(r) directly from dielectric spectra reliably, un-
forming liquids. In these cases Eq. (1) is no longerambiguously, and without biasing the results.

adequate, and the complex spectrasofw) are usually  Our algorithm is based on solving an integral equation.
described using phenomenological functions (as reviewete make an explicit assumption that individual relaxation
in [5]). processes in the sample are Debye-like and independent of

Typically, a superposition of several such functionseach other, and that the superposition principle holds for
provides a satisfactory multiparameter fit to the experi+*(w). We introduce the normalization condition ([11],
mental data. However, relating the parameters so olpp. 317,318)
tained to the intrinsic physical properties of the material is
not always straightforward. A further drawback of such [ g(n)d(nt) = 1. (2)
an approach is the inherent difficulty of separating pro- D
cesses with comparable relaxation times. A proper choicghe real and imaginary parts of the dielectric spectrum
of the number of processes used to fit the data is not ak™(w) are then represented by
ways obvious, and additionalpriori assumptions have to ()
be made. &(w) = e + Asf 8 —d(n7), 3)

An alternative way to describe a dielectric relaxation p 1+ w7
spectrum is in terms of an ensemble of Debye processes
with a continuous relaxation time distributiorg(7).

I _ 00 g(1)wr
For Eq. (1), g(7) reduces to aé function, while the e'(w) = e + Ast d(In7),  (4)

1 + w?7?
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where the first term i’ (w) accounts for the conductiv- called n-dimensional statistical F test to determine the

ity and electrode polarization effectsry is the dc con- value of RP. A significantly more reliable method for

ductivity andAe g(7) d (In7) is the combined relaxation estimating an optimal RP value is the self-consistency

strength of all processes in the range betweendnd (SC) method of Honerkamp and Weese [12,15]. It has

Int + d (In7). The integration is performed over the en- proved successful in many numerical algorithms related to

tire domainD of In~. Fredholm integral equations [12,15-17]. The SC method
A discrete set of experimental datzaj(,-fs),j =1,...,m, guarantees that the approximati®fr) is in the vicinity of

is always incomplete, i.e., known at a limited number ofthe trueg(7) if s is either known in advance or correctly

frequency sampling points;, and affected by the noise estimated.

dj, Once the optimum value of RP is determined from the

& _ SC method, minimizingb(g(7), e, A&, o) yields g(7),
g = &j + 5.]', (5) - . . . : .
£, etc. Finally, since these approximations are obtained
where the “exact datat; = ;(g(7), &=, Ae, 00,5) are  for a given fixed value of, the entire procedure must now
completely determined by(7), e=, Ae, oy, ands through  pe repeated sweeping an appropriate range vhlues

Egs. (3) and (4), until @ minimum in
. SI(wj), j=1,...,m, 2m

& = {s”(wjm), i=m+1),...2m. © () = S[e¥ - 6(3.8.. A8, 50,9 (8)
j=1

A numerical analysis of such data should provide)

and the parameters.., Ae, o, ands. However, for s found, which yields a reasonable approximation
noisy data one can only expect to obtain approximations: Nymerical implementation of this algorithm involves

&(r), &=, A&, &9, ands. In general, obtaining reason- 5nhroximating the integral equation by an adequate matrix
able_a_lpproxmatlon; from noisy relaxation data is a ratheéquation, i.e., selecting a set of logarithmically spaced
a}mbltlous under_taklng. Equat.lons (3) and '(4) are essefygints {7} and then calculatingg; = 3(r;) and the
tially Fredholm integral equations of the first kind and approximationss.., A&, &, and3, using the set of noisy

thus belong to the class of so-called “ill-posed” prob- (8) .

i i (5) o spectral datde; "} and the guessed range &s inputs.
lems. That s, for any set of noisy dafe; }, an infinite Extensive simulation studies revealed that the algorithm
number of approximations te(7) result in equally good s staple with respect to the noise, provides excellent
fits &;(2(r), 8=, A, &0,5) to the input data in the least- yogo1ution of multiple relaxation processes, and extracts

squares or maximum error sense. /-_\Imost all of thosgy,e shapes closely approximating the trgér). For
approximations are, in fact, wrong which can be demo”'example, as shown in Fig 1, two slightly broadened

strated using the Riemann-Lebesque theorem [6]. For thigehye processes different in their relaxation times by
reason, simple least-squares or linear programming alg0q,ch |ess than one decade are nearly impossible to
rithms are not appropriate for dealing with such integralyigiinguish directly from the dielectric spectra, yet are

equations. o _ . clearly separated in the domain. As expected, the
Tikhonov regularization algorithm (TRA) [7,8] is yegolition and the ability to extract the true line shape
known to provide reliable solutions of such integralmnrove as the noise is reduced or the number of sampled
equations. For a given fixed value of the exponent equencies is increased. The choice of the frequency
TRA minimizes the following expanded least-squaresindow does not critically influence the resolution as long
expression with respect ?(T)’ e, Ag, andoy: as all processes are largely in the sampled region.
= () In addition to resolving closely spaced discrete relaxa-
D (g(7), &, Ae, 00) = Zi[gf — P Al ) on processes, the met%od is Zapgble of extracting true
I~ continuous line shapes. This is essential when the under-
subject tog(r) = 0. Here A is the regularization param- lying relaxation mechanisms are not knoaipriori. An
eter (RP) andg” denotes the second derivative gfr)  asymmetric multimodal distribution with four Gaussian-
with respect to Im. The first term in Eq. (7) is the usual broadened peaks is shown in Fig. 2(b) and the corre-
least-squares term which guarantees compatibility of theponding complex spectrum in Fig. 2(a). The discrete
fit with the data. TRA introduces the second term whichpoints in Fig. 2(b) show how well the calculated distri-

constrains the smoothnessgfr). butions reproduce the original “trug/(7), and a physical
A good estimate fon is essential for the quality of the interpretation is now possible in thedomain.
solution [12]. Too small values fok result in artificial, Salol (phenyl salicylate) adsorbed on a (dielectrically

physically meaningless structuresgfir), while too large inactive) porous glass with a pore size b6 nm was

a A tends to oversmooth the shapeggf) and to suppress chosen as an experimental test system. Such restrictive
information. The first attempt to apply regularization environments allow one to study distortion of cooperative
techniques to the analysis of the dielectric data [13] baselehavior of glass-forming systems, effects of bulk-
on theconTIN procedure of Provencher [14] used the so-to-surface interactions, or reptation of polymers in
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FIG. 3. (a) Dielectric loss data” of the salol on a micro-
FIG. 1. (a) A complex dielectric spectrum, simulated usingporous glass of7.5 um pore size atl' = 251 K. (b) g(7)
Egs. (3) and (4) forn = 60 logarithmically spaced frequencies. calculated by TRA. The inset in (a) illustrates the process
Gaussian random numbers of the amplitude ®M$% of of estimatings by finding a minimum of ¥(s) (see text).
maqe'(w)] are added to simulate the noise, and = 1. Three processes are clearly separated: |, relaxation in a lig-
(b) g; numerically extracted from the spectra for 100 valuesuid bulklike environment; Il, relaxation influenced by the inter-
of Int; are plotted as discrete points. The true line shape iface; and Ill, Maxwell-Wagner polarization. The values found
shown with a solid line for comparison. The vertical size of are 5 = 0.99, /8, = 0.036, and A& = 4.3 (in agreement
the plotting symbols in (b) represents the range of confidenceavith [20]).
provided by the algorithm.

of molecules influenced by the interface, and a con-

nanolabyrinths. Previous dielectric studies have estribution due to Maxwell-Wagner (MW) polarization
tablished that the dielectric behavior of the system iseffects [18,19]. A conventional data analysis yielded
basically governed by three processes: relaxation afeasonably good fits of the data to superpositions of three

molecules in a liquid bulklike environment, relaxation Havriliak-Negami functions [18].
We analyzed dielectric spectra of the salol system
measured at 44 temperatures betw@eii and 313 K.

. A typical spectrum and the corresponding calculated
*, g(7) are shown in Fig. 3. Here, too, three separate
051+ &'(w) ", processes are clearly recognizable. It must be pointed
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FIG. 4. Dielectric loss data of salol on a microporous glass of
FIG. 2. (a) A complex dielectric spectrum, simulated as in7.5 uwm pore size as a function of temperature. The solid lines
Fig. 1(a), but from a multimodal distributiog(r) with four indicate spectral regions where the relaxation processes | and Il
Gaussian-broadened peaks. @)numerically extracted from from Fig. 3 dominate. The data from the regions indicated by
the spectra (discrete symbols, vertical size is the range dhe dashed lines are either not available or not used to exclude
confidence) closely reproduce the true line shape (a solid line)the influence of the Maxwell-Wagner process.
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easily adapted to other types of fundamental relaxation
processes, by changing the integral kernels in Egs. (3) and
(4); the algorithm is applicable to a wide range of kernel
functions.
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