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Broadband dielectric spectra are usually fitted to a superposition of contributions from o
several parametrized processes (Debye, Havriliak-Negami, etc.). This work proposes instead to
continuous distributions of relaxation times from complex dielectric spectra by solving a Fred
integral equation using the Tikhonov regularization technique with a self-consistent choice o
regularization parameter. This method is stable with respect to the noise and resolves m
dynamical processes. An experimental example of salol adsorbed on microporous glass is analy
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Broadband dielectric spectroscopys1022 109 Hzd is
widely used to study molecular dynamics in complex s
tems such as glass-forming liquids and liquid crystall
materials (e.g., [1–4]). Sample polarization in an exter
electric field depends both on geometrical factors and
the mobility of molecular segments, molecules, or clu
ters of molecules. From the dielectric response one
obtain dipolar strengths, dielectric losses, and correla
times of the relaxation processes present in the system

A single Debye process has the following well-know
frequency dependence of the complex dielectric perm
tivity ´p ­ ´0 2 i´00:

´psvd 2 ´` ­
´0 2 ´`

1 1 ivt
­

D´

1 1 ivt
, (1)

where t is the relaxation time,́ 0 is the static (dc)
permittivity, and´` ­ ´sv ! `d. In practice, one often
observes a superposition of several relaxation proce
with different t values, or even a continuous distributio
of relaxation times. The spectra may also contain featu
due to cooperative relaxation phenomena, e.g., in gl
forming liquids. In these cases Eq. (1) is no long
adequate, and the complex spectra of´psvd are usually
described using phenomenological functions (as review
in [5]).

Typically, a superposition of several such functio
provides a satisfactory multiparameter fit to the expe
mental data. However, relating the parameters so
tained to the intrinsic physical properties of the materia
not always straightforward. A further drawback of su
an approach is the inherent difficulty of separating p
cesses with comparable relaxation times. A proper cho
of the number of processes used to fit the data is no
ways obvious, and additionala priori assumptions have to
be made.

An alternative way to describe a dielectric relaxati
spectrum is in terms of an ensemble of Debye proces
with a continuous relaxation time distribution,gstd.
For Eq. (1), gstd reduces to ad function, while the
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superposition methods [5] correspond to line shapes w
several symmetrically or asymmetrically broadened pea
of gstd. Unfortunately, direct extraction ofgstd from
´psvd is a mathematically ill-posed problem [6–8]. Thi
difficulty may be one of the reasons why the spectra a
usually treated as superpositions of a few parametriz
functions. If a direct calculation ofgstd from ´psvd
could be performed reliably, in a manner similar t
the Fourier transformation between time and frequen
domains, then several problems arising from the use
empirical functions could be avoided. Having obtaine
gstd, one could then seek a physical interpretation in t
t domain rather than in the frequency domain.

Attempts to develop a suitable numerical algorith
have been made previously, e.g., Tschoegl’s second
proximation method [9] and the histogram method
Imanishi, Adachi, and Kotaka [10]. However, the amb
guity of the extractedgstd, which arises from the ill-posed
nature of the problem, has not yet been satisfactorily
solved. In this work, we present an algorithm which ca
extractgstd directly from dielectric spectra reliably, un-
ambiguously, and without biasing the results.

Our algorithm is based on solving an integral equatio
We make an explicit assumption that individual relaxatio
processes in the sample are Debye-like and independen
each other, and that the superposition principle holds
´psvd. We introduce the normalization condition ([11]
pp. 317,318) Z

D
gstdd slntd ­ 1 . (2)

The real and imaginary parts of the dielectric spectru
´psvd are then represented by

´0svd ­ ´` 1 D´
Z

D

gstd
1 1 v2t2

d slntd , (3)

´00svd ­
s0

´0
v2s 1 D´

Z
D

gstd vt

1 1 v2t2
d slntd , (4)
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where the first term iń 00svd accounts for the conductiv
ity and electrode polarization effects.s0 is the dc con-
ductivity andD´ gstd d slntd is the combined relaxation
strength of all processes in the range between lnt and
lnt 1 d slntd. The integration is performed over the e
tire domainD of lnt.

A discrete set of experimental data,´
sdd
j , j ­ 1, . . . , m,

is always incomplete, i.e., known at a limited number
frequency sampling pointsvj, and affected by the nois
dj,

´
sdd
j ­ ´j 1 dj , (5)

where the “exact data”́ j ­ ´jsssgstd, ´`, D´, s0, sddd are
completely determined bygstd, ´`, D´, s0, ands through
Eqs. (3) and (4),

´j ­

Ω
´0svjd, j ­ 1, . . . , m ,
´00svj2md, j ­ sm 1 1d, . . . , 2m . (6)

A numerical analysis of such data should providegstd
and the parameterś`, D´, s0, and s. However, for
noisy data one can only expect to obtain approximati
g̃std, ˜́`, D ˜́ , s̃0, and s̃. In general, obtaining reason
able approximations from noisy relaxation data is a rat
ambitious undertaking. Equations (3) and (4) are ess
tially Fredholm integral equations of the first kind an
thus belong to the class of so-called “ill-posed” pro
lems. That is, for any set of noisy datah´sdd

j j, an infinite
number of approximations togstd result in equally good
fits ´jsssg̃std, ˜́ `, D ˜́ , s̃0, s̃ddd to the input data in the least
squares or maximum error sense. Almost all of tho
approximations are, in fact, wrong which can be dem
strated using the Riemann-Lebesque theorem [6]. For
reason, simple least-squares or linear programming a
rithms are not appropriate for dealing with such integ
equations.

Tikhonov regularization algorithm (TRA) [7,8] is
known to provide reliable solutions of such integr
equations. For a given fixed value of the exponents,
TRA minimizes the following expanded least-squar
expression with respect togstd, ´`, D´, ands0:

Fsssgstd, ´`, D´, s0ddd ­
2mX
j­1

f´sdd
j 2 ´jg2 1 ljjg00jj (7)

subject togstd $ 0. Herel is the regularization param
eter (RP) andg00 denotes the second derivative ofgstd
with respect to lnt. The first term in Eq. (7) is the usua
least-squares term which guarantees compatibility of
fit with the data. TRA introduces the second term wh
constrains the smoothness ofgstd.

A good estimate forl is essential for the quality of the
solution [12]. Too small values forl result in artificial,
physically meaningless structures ing̃std, while too large
a l tends to oversmooth the shape ofg̃std and to suppress
information. The first attempt to apply regularizatio
techniques to the analysis of the dielectric data [13] ba
on theCONTIN procedure of Provencher [14] used the s
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called n-dimensional statistical F test to determine th
value of RP. A significantly more reliable method fo
estimating an optimal RP value is the self-consisten
(SC) method of Honerkamp and Weese [12,15]. It h
proved successful in many numerical algorithms related
Fredholm integral equations [12,15–17]. The SC meth
guarantees that the approximationg̃std is in the vicinity of
the truegstd if s is either known in advance or correctl
estimated.

Once the optimum value of RP is determined from t
SC method, minimizingFsssgstd, ´`, D´, s0ddd yields g̃std,
˜́`, etc. Finally, since these approximations are obtain
for a given fixed value ofs, the entire procedure must now
be repeated sweeping an appropriate range ofs values
until a minimum in

Cssd ­
2mX

j­1

f´sdd
j 2 ´jsg̃, ˜́ `, D ˜́ , s̃0, sdg2 (8)

is found, which yields a reasonable approximations̃.
Numerical implementation of this algorithm involve

approximating the integral equation by an adequate ma
equation, i.e., selecting a set of logarithmically spac
points htij and then calculatingg̃i ­ g̃stid and the
approximations̃́ `, D ˜́ , s̃0, and s̃, using the set of noisy
spectral datah´sdd

j j and the guessed range ofs as inputs.
Extensive simulation studies revealed that the algorit

is stable with respect to the noise, provides excelle
resolution of multiple relaxation processes, and extra
line shapes closely approximating the truegstd. For
example, as shown in Fig 1, two slightly broadene
Debye processes different in their relaxation times
much less than one decade are nearly impossible
distinguish directly from the dielectric spectra, yet a
clearly separated in thet domain. As expected, the
resolution and the ability to extract the true line sha
improve as the noise is reduced or the number of samp
frequencies is increased. The choice of the frequen
window does not critically influence the resolution as lon
as all processes are largely in the sampled region.

In addition to resolving closely spaced discrete relax
tion processes, the method is capable of extracting t
continuous line shapes. This is essential when the und
lying relaxation mechanisms are not knowna priori. An
asymmetric multimodal distribution with four Gaussian
broadened peaks is shown in Fig. 2(b) and the cor
sponding complex spectrum in Fig. 2(a). The discre
points in Fig. 2(b) show how well the calculated distr
butions reproduce the original “true”gstd, and a physical
interpretation is now possible in thet domain.

Salol (phenyl salicylate) adsorbed on a (dielectrica
inactive) porous glass with a pore size of7.5 nm was
chosen as an experimental test system. Such restric
environments allow one to study distortion of cooperati
behavior of glass-forming systems, effects of bul
to-surface interactions, or reptation of polymers
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FIG. 1. (a) A complex dielectric spectrum, simulated usin
Eqs. (3) and (4) form ­ 60 logarithmically spaced frequencies
Gaussian random numbers of the amplitude of0.3% of
maxf´0svdg are added to simulate the noise, andD´ ­ 1.
(b) g̃i numerically extracted from the spectra for 100 value
of lnti are plotted as discrete points. The true line shape
shown with a solid line for comparison. The vertical size o
the plotting symbols in (b) represents the range of confiden
provided by the algorithm.

nanolabyrinths. Previous dielectric studies have e
tablished that the dielectric behavior of the system
basically governed by three processes: relaxation
molecules in a liquid bulklike environment, relaxatio

FIG. 2. (a) A complex dielectric spectrum, simulated as
Fig. 1(a), but from a multimodal distributiongstd with four
Gaussian-broadened peaks. (b)g̃i numerically extracted from
the spectra (discrete symbols, vertical size is the range
confidence) closely reproduce the true line shape (a solid lin
g
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FIG. 3. (a) Dielectric loss datá 00 of the salol on a micro-
porous glass of7.5 mm pore size atT ­ 251 K. (b) g̃std
calculated by TRA. The inset in (a) illustrates the proce
of estimating s̃ by finding a minimum ofCssd (see text).
Three processes are clearly separated: I, relaxation in a
uid bulklike environment; II, relaxation influenced by the inte
face; and III, Maxwell-Wagner polarization. The values foun
are s̃ ø 0.99, s̃0y ˜́ 0 ø 0.036, and D ˜́ ø 4.3 (in agreement
with [20]).

of molecules influenced by the interface, and a co
tribution due to Maxwell-Wagner (MW) polarization
effects [18,19]. A conventional data analysis yielde
reasonably good fits of the data to superpositions of th
Havriliak-Negami functions [18].

We analyzed dielectric spectra of the salol syste
measured at 44 temperatures between227 and 313 K.
A typical spectrum and the corresponding calculat
g̃std are shown in Fig. 3. Here, too, three separa
processes are clearly recognizable. It must be poin

FIG. 4. Dielectric loss data of salol on a microporous glass
7.5 mm pore size as a function of temperature. The solid lin
indicate spectral regions where the relaxation processes I an
from Fig. 3 dominate. The data from the regions indicated
the dashed lines are either not available or not used to excl
the influence of the Maxwell-Wagner process.
2179
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FIG. 5. Relaxation time distributions as a function of tem
perature, as extracted from the dielectric loss data of Fig.
The region shown with dashed lines does not reflect the infl
ence of the Maxwell-Wagner process which is excluded for th
calculation.

out, however, that our algorithm did not require ana
priori assumption of three processes. A complete set
temperature-dependent spectra of salol is shown in Fig
(for clarity, only the dielectric loss datá00 are used).
The main physical interest in these spectra is restricted
the resolution and evaluation of the two higher frequen
processes (I and II in Fig. 3), thus the data analysis
limited to the frequency range above the low-frequen
MW process (III in Fig. 3).

The power of transforming the frequency-domain spe
trum into at-domain distribution function is evident in
Fig. 5, whereg̃std calculated from the data of Fig. 4 is
shown. A dramatic temperature dependence of the t
relaxation processes is observed. At lower temperatu
an almost constant bimodal line shape ofg̃std shifts to
smaller lnstd values linearly with decreasing1yT . At
a temperature of about260 270 K the line shape of
g̃std, its first and second moments, and its temperatu
dependence undergo a dramatic change. None of th
crucial features is clearly discernible from the dielectr
loss spectra of Fig. 4.

To summarize, the purpose of this Letter is to introdu
a novel and reliable method for extracting continu
ous relaxation time distributions of Debye fundament
processes directly from the broadband dielectric spec
The rigorous numerical approach introduced here is w
suited for analyzing both complex dielectric spectra a
dielectric loss data only. Analysis of the salol spect
shows that a mapping from the frequency domain in
the t domain can greatly aid in the interpretation of th
experimental data. In principle, this approach can
2180
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easily adapted to other types of fundamental relaxati
processes, by changing the integral kernels in Eqs. (3) a
(4); the algorithm is applicable to a wide range of kern
functions.
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