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We study the properties of the striped phases that have been proposed for the doped cuprate planar
guantum antiferromagnets. We invoke an effective, spatially anisotropic, nonlinear sigma model in two
space dimensions. Out theoretical predictions arquantitativeagreement with recent experiments.

We focus on (i) the staggered magnetizatiorTat 0 and (ii) the Néel temperature as functions of
doping; these have been measured recently in L%, CuQO, with 0 = x = 0.018. Good agreement

with experiment is obtained using parameters determined previously and independently for this system.
These results support the proposal that the low doping (antiferromagnetic) phase of the cuprates has a
striped configuration.

PACS numbers: 75.10.Jm, 64.75.+g, 74.72.Dn, 75.50.Ee

Our understanding of thandopedplanar cuprates re- in the regions between stripes, and by a weaker such
lated to high temperature superconductors has been iexchange across each stripe. Conceptually, we use real
formed largely by the insights of Chakravarty, Halperin,space renormalization in the direction to integrate out
and Nelson [1] (hereafter, CHN). It is now widely ac- the short distance dynamics, starting with blocks the size
cepted that the antiferromagnetic phase of these materf the region between stripes. This is continued to a
als can be well described by an effective nonlinear sigmacale of the correlation length, much larger throughout the
model. However, the situation is not so clear when weregion of interest to us than the interstripe spacing. The
turn to the behavior of doped systems, as the antiferroexpected leading result for the low frequency dynamics in
magnetic moves toward a superconducting instability. Iwhich we are interested is a spatially anisotropic nearest
has long been recognized [2,3] that there is a tendency fareighbor Heisenberg exchange model,
the holes to phase separate in these strongly correlated in-
sulators. Experimental observations [4] support this sce-

_ < . < /
nario for some of the La cuprates at high concentrations of H=J Z S(n,m) - S(n,m’)

dopants. In addition, recent nuclear quadrupole resonance ')
(NQR) and muon spin resonance$R) experiments [5] + J, Z S(n,m) - S(n',m), (1)
in La,—,Sr,CuQy,, with 0 = x = 0.018, have been inter- mmn’)

preted within a picture where holes are segregated into a
set of parallel stripes. It is the primary goal of this Let- wheren andm label the sites in the andy directions,
ter, in fact, to do a more careful theoretical analysis of theespectively. J, and J, are the effective spin exchange
consequences of that model and to compare the predistrengths in the two directions. In general they depend on
tions to those experiments. the dopingx, but the exact form of that dependence relies,
With the x-y coordinate axes chosen as the crystalof course, on microscopic details.
axes in the Cu@ plane, we take an array of equivalent The destruction of long-range order at zero temperature
uniformly spaced stripes parallel to theaxis. In this and the suppression of the staggered magnetization with
simplest of models we neglect both static and dynamidéncreased hole then come about from the dimensional
fluctuations (and domain formation). The situation is notcrossover from two- to one-dimensional behavior with the
very different if we consider diagonal stripes, such as théncreasing anisotropy of the system (in our effective
ones found in LaNiO, 155 and La gSryNiO, [6]. But  model the critical coupling constargt., which separates
here we will treat only the horizontal stripe geometryordered from disordered behavior &= 0, decreases
suggested for La . Sr,CuQ, by the experimental data [7]. with doping). At the same time, the renormalized spin
In the regions between the stripes, the Cu spin correlationstiffness decreases as the density of holes grows. As
are presumed to remain antiferromagnetic. g.(x) decreases it equals at some critical concentration
As in the CHN analysis [1] of the pure case, wex. the coupling constant of the undoped system, and
will argue that the underlying symmetries suggest arantiferromagnetism disappears.
appropriate nonlinear sigma model to describe the long To simplify the study of the long wavelength physics,
wavelength behavior which determines the phase diagranit. is convenient to take the continuum limit of (1). We
We start from a microscopic model with the spinsuse the usual spin coherent state representation [8] and
interacting via Heisenberg antiferromagnetic exchangeve find that the effective action (in Euclidean time) in the
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partition function can be written as go(a) = go(1)\/(1 + a)/2/a . In what follows we will
L chooseg(1) renormalized to give thénteracting spin
Sefp = _f dT]dxfdy{SZ[Jy(avﬁ)Z + J.(9,2)%] wave velocity of Oguchi [12], rather than the simple spin
2 Jo ’ wave value above. Because the effective exchahge
in the x direction is weakened by the stripes, we have
(aTﬁ)z}, O0=a=1.
(2) At high anisotropy(e¢ — 0) the spin chains become
disconnected and we find one-dimensional behavior. In
where 7 is a unit vector anda is the sublattice this limit m > «'/4, and we find at zero temperature
constant. This gives spin wave velocities? =  from (4), m(a) = 4o~ V*/ 7 exd—4m%/a*go(a)],
28%a%J,(J, + Jy)/R* and ¢ = 28%a%J.(J, + J,)/h?,  which is just the Haldane gap [13]. We came to this
which agree with a simple (noninteracting) spin waveresult because the nonlinear model without a topo-
calculation based on (1). This action was studied numenogical term describes the behavior of @meger spin
ically in a different context a few years ago [9]. chain [14]. In the opposite limity < a'/4, the system
It is useful to rewrite (2) more symmetrically is fully two-dimensional, and Eq. (4) at zero tempera-
by a dimensionless rescaling of the variablesture leads tom(a) = 42 7ot /YT + all/g.(a) —
x' = (L /I)VAxA, Yy = (/) Y4yA (A is a mo-  1/go(1)], where

mentum cutoff), andr’ = \/Z(Jx + ) Idy Sat/h. go(@) = 8724 a/(1 + a){InWa + VT + a)

Then the effective action (2) becomes
e F @il + VT +a/val 6
Seft = %f dTlfdx/fdy/(aMﬁ)z, 3) Ve In[ a/Jal (6)
go) Jo

is the critical coupling constant of the theory. It is easy

where u takes the values’, y’, 7/, go = licoA/p; =  to see thag. decreases monotonically to zero as the sys-
[2(J, + J).)/,/JXJ).]I/%A/S is the bare coupling con- tem becomes more anisotropic and the increasing quantum
stant, co = [2(J, + Jy)/ /ijy]l/?as/h the spin wave fluctuations again make magnetic order less stable. Di-
velocity, andp? = ,/J.J, S? the classical spin stiffness mensional crossover occurs when the correlation length in
of the rescaled model. The original anisotropy is nowthe x direction becomes of the order of the lattice spac-
hidden in the limits. We started with a problem with aing, that is,m(«a;) = atl/4, and a numerical estimate gives
finite bandwidth, a lower bound on length which requiresa, =~ 0.001.
us to impose a cutoff in the original continuum formula- To understand the corrections to the classical limit,
tion. The change of variables introduces an anisotropy ive employ a renormalization group (RG) calculation up
the cutoffs. to second order in the coupling constant. Proceeding

The o model action, and the spin correlations itas in [1], we find within a one-loop approximation the
implies, can be studied in the largd limit (N is  renormalized spin stiffness
the number of components @f), where a saddle point
approximation becomes exact [10,11]. The staggered ps(a@) = p2a)[1 — go(1)/g.(a)], @)
spin-spin correlation function is given b§(k, w,) =
g0/(k* + @2 + m?), where m is defined by the self- reduced from its classical valup? for fixed a. As
consistent conditiony, 3 E(k,w,;m) = 1, and sets a first consequence we see that the stiffness will van-

the scale for the correlations in the system. The selfish for some critical valueq = a., which can be cal-
consistency equation can also be written, after the surfulated numerically. Oguchi's spin wave theory [1,12]
over Matsubara frequenciesl as glveSgo(l) ~ 9.536. Then (7) givesa, = 0.047, much

greater thany,, so the transition from classical to quan-
80 d’k coth(Vk? + m? BcoA/2) _ tum regimes (ordered to disordered ground state) occurs
2 (2m)? VK2 + m?

well before the potential crossover from two- to one-
- I . o di ional behavior [15].

Formally, this integral has a logarithmic ultraviolet di- imensional behavior [15]

vergence. If we choose an isotropic cuteff/ Aa for

We turn to the finite temperature behavior. Again,
. o we can use the inequalityy < a'/* in estimating the

the Fourier transform of the original problem (2), then quality < a g

k| < ma'/*/Aa and|k,| < ma~'*/Aa, where

correlation lengthé o« 1/m from Eq. (4). However, we
know from studies of the undoped system that the one-

hZ
_l’_ e —
2a%(J, +Jy)

1. 4

a=J./J, (5) loop calculation does not give a very good results for
’ the prefactor of the temperature dependent exponential
is the anisotropy parameter (as usual, we take =  expression foré, and the same will surely be true for

2 /7 to preserve the area of the magnetic Brillouina < 1. Here we use an interpolation formula between
zone). By the definition above, the coupling constanthe exact result of Hasenfratz and Niedermayer [16] for
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the nonlinear sigma model, which is valid close to theThis expression has been used previously [1] to estimate
ordered phase, and the result for the renormalized critical, /kz = 0.01 K from the experimentally of the pure

regime wheret o« T~ material. SinceM,/M, < 1, this gives ¢/a > 10 for
27 (@) kg T Tnx > 1 K, suggesting that this mean field theory is rea-
e hico TP\ W)/ . )
ET,a) = — . (8) sonable forTy greater than a few kelvin. We now substi-
8 2mps(a) 1 + kgT /47 ps(a) tute the expression (8) f@rin the quantum critical regime
This gives excellent agreement [1] with experiment in theinto (10) to findTy(a) = (a/a. — 1)'/3, defining a crit-
pure casey = 0. ical exponent of 13.

In general the staggered magnetization depends on the In order to compare our results with the experiments,
short, as well as on the long wavelength physics of thave need the relationship between the anisotropy param-
problem. As in [1], instead of using the nonlinear sigmaeter (5) and the doping concentration Explicit calcu-
model directly, we observe that the equal time staggerelgtion of that is complicated, depending intrinsically on
spin-spin correlation function at large distances becometie chemistry of the material; it goes beyond our previous
proportional to the square of the staggered magnetizatio@nalysis. Instead, we propose a simple parametrization,
My —eyoo 2(x,y) = (M/My)?, where M, is the stag-
gered magnetization for the classical problem (the fully alx) = e/, (11)
aligned Néel state, without quantum fluctuations). At zero
temperature, in the ordered phase, the correlation lengtith xo, the single (nonuniversal) parameter characteriz-
is infinite. The only scale left is the Josephson lengthjng the behavior, dependent in an unknown way on the
&7 = hco/ps. On one hand, the asymptotic (large dis-microscopic details of the system. We fix the value of
tance) limit of the correlation function has been establishedo from experiment. We stress that this is thely free
at this scale. On the other hand, this is the maximum scalparameter in our theory. All others are obtained indepen-
at which the long wavelength dominated theory we havelently for the undoped material, and they are well known.
developed can be trusted. Therefore, we equate the corre-Experimentally the staggered magnetization and
lation function at this (scaled) length to the square of théhe Neéel temperature vanish at a critical doping
relative zero point magnetization, and using the RG result. = 0.02-0.023 [5]. This value ofx, must correspond

(7), we find in our model to the point at which the spin wave stiffness
vanishes, that is, to the critical value. = 0.047. Then
My(@) _ \/1 — gO(l)/gc(“)_ (9) (11) givesxy =~ 0.007. Depending on the density of
M (1) 1 — go(1)/g.(1) holes in the stripes, this corresponds to a stripe spacing

of order 10 lattice constants or so, a reasonable scale on
which to expect substantial changes to occur. Substitut-
ing (11) into (9), we find the staggered magnetization as

a function of doping. In Fig. 1 we show the theoretical

To have true long-range order @ > 0, we need to o . .
invoke the weak coupling between plands, Because prediction (full Ilne_) and the expenment_al values .(dOtS)
’ from Ref. [5]. In view of the approximations used in the

J./J =5 X107 [17] is so small, long-range correla- h b h tis X
tions have built up in the plane well above the ordering eory above, the agreement IS Impressive.

temperaturd’y. Spin fluctuations then involve large cor-
related regions, and it is a good approximation to treat
J. within a mean field theory. To determine the depen- /" (©
dence of the Néel temperature on anisotropy, one needs to
know the connection between the classical spin stiffness 1
and«. Here we assume as a simple model that the clas-

As expected,M,(a.) = 0, and close toa, we find
My (a) = (a/a. — 1)'/2, which has the mean field ex-
ponent of ¥2.

sical stiffness is approximately independentaobver the 0.8

region of interest, equal to the undoped vaiféa = 1),

S0, /JJ, = J. 0.6
Magnetic order is destroyed by thermal fluctuations,

at a temperaturdy, when the energyzTy becomes 0.4

sufficient to flip the spins in a region of linear dimension

of the order of the coherence lengih Since the number 0.2
of spins in this region is proportional t@/a)?, and the
relative staggered magnetization in the region is given by
M,/M,, we estimate

X

0.005 0.01 0.015 0.02

5 FIG. 1. Staggered magnetization (normalized relative to the
_ (T, @) My undoped case) as a function of doping (line) and experiment
kBTN(a) = JL — M() . (10) (dOtS).
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