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Many-Dimensional Quantum Energy Flow at Low Energy
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Criteria for ergodicity and rates of energy flow in a quantum mechanical systeii obupled
anharmonic oscillators wher®&y' is large are determined at energies near the ground state of the
system. High-order resonances are important for the transition at Mrgéhe role of numerous
virtual transitions, “vibrational superexchange,” in global transport is examined both for typical parts of
the state space and special states often interrogated experimentally.

PACS numbers: 05.30.—d, 05.45.+b, 34.30.+h

Understanding the origin and nature of irreversibility molecules or clusters. We find criteria for ergodicity and
in finite quantum systems is an ongoing pursuit. Therates of energy flow among coupled anharmonic oscilla-
path toward establishing criteria for ergodicity in quan-tors, whereV is large, at energies near the ground state of
tum systems of low dimension has been guided by the cothe system, i.e., much below that at which a typical oscil-
respondence principle limit of classical dynamics [1-3].lator has even a single quantum of excitation. The model
Because of their inherently large state space, howevecontains very high-order nonlinear resonant processes that
many-dimensional quantum systems may be usefully deplay a crucial role. At low total energy, energy flow can
scribed by statistical concepts such as ergodicity even atvolve numerous virtual transitions in state space; in some
low excitation. Still, much less is known about the naturesectors a large number are needed to bridge two resonant
of quantum energy flow in many-dimensional systems [3-states. This process, called “vibrational superexchange,”
6]. Quantum ergodicity and the rate of equilibration play,has been the subject of recent investigations [11,12] scru-
moreover, a central role in dynamical theories of finitetinizing vibrational energy transfer in specific molecules
many-body systems such as nuclei, molecules, and clusuch as-butylacetylene and 1-propyne. The role of vi-
ters. Insightinto the nature of quantum energy flow can bdrational superexchange towards energy flow in our model,
drawn from the numerous studies in few dimensions, suchnd the contribution of high-order resonances to a transi-
as the relationship to classical chaos and the possibility dfon to global flow at low energies is elucidated below.
its quantum mechanical suppression. Much attention has We study a system df oscillators with total excitation
focused on driven systems [7] and two coupled anharmonieaching no more tham = N? quanta,0 < y < 1, so
oscillators [8], where finitéi corrections to the semiclas- that the system lies near its ground state. The Hamiltonian
sical limit localize the quantum system to only part of itsis H = Hy + V, where
energetically allowed space while the corresponding clas-

N
sical system can roam freely throughout it. The nature of Hy = Z €a(fin), (1a)
guantum irreversibility in many-oscillator systems is less a=1
well understood, but there are strong indications that quan- . -
d, _ - tm g m
tum suppression of chaos also occurs whéris large. 4 Z l_[¢mba,-m ba™ (1b)
m o

Logan and Wolynes (LW) [4] have put forward argu-

ments suggesting high dimensional systems of nonlinearly = {1, as,...}andm = {m;,m5,...}. H contains not
coupled oscillators undergo a localization transition akin toonly the familiar low-order Fermi resonances but also
the Anderson transition [9] of single particle transport inhigher-order direct resonances that we assume satisfy
disordered systems. In many-dimensional systems qua@- scaling relation [12],¢m = (=1)? 30> 7 (p = 3),
tum effects may also permit flows prohibited by classicawherep = Y ,_,(m; + m; ). Eachp-tuple of coupling
mechanics. Heller and Davis [10] conjectured that in largderms in (1b) is taken from a set &f? = N°7, 0 <
molecules, enabled by a high density of states, vibrationa? = 1, oscillators to which a given oscillator can directly
relaxation could occur among all energetically availablecouple. Whené = 1 each oscillator couples directly to
modes via a classically forbidden mechanism they calledll others, while for6 < 1 H is sparse, thereby introduc-
“dynamical tunneling,” that allows transitions among in- ing additional locality to excitation transfer; the effective
variant tori to which classical motion would be otherwiselocal density of stateg,;(E), to which a zero-order state
confined. In quantum systems of high dimension, not onlyof H couples is much smaller than the global level den-
fi but alsoN serves as a parameter tuning the transition teity, p,(E), for large N whené < 1. The number op-
ergodicity. Seeking to address the interplay between dyerator is defined byi, = b1b,, and oscillators ofH,
namical tunneling and localization, in this Letter we ex-have frequency,(n,) = &~ '€, (nq)/9n, and nonlin-
plore the origins and extent of quantum irreversibility atearity !, (n,) = i '0wq(na)/dn,. As a simple model,
low energy, in a system that mimics in some respects largere assuméi?|w!,| < fiw,, andew, random with a small
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but nonvanishing dispersion. The former restricts the rol@ur model, however, (2) cannot be truncated before at
nonlinearities have in the local level densities, while theleast the lowest-order terms coupling the initial state to
latter constrains all oscillators to have similar frequenciesstates resonant to it. It is also apparent that a probability
and primarily affects the superexchange mechanigih. distribution for S;(E) of an initial state, say|m000---),
is thus represented by an ensemble of random matricesjay be very different from that of most isoenergetic
with oscillator frequencies, nonlinearities, and couplingstates. The latter typically hasexcited modes, each with
terms all chosen from probability distributions satisfyingonly a few quantag ~ 1. Because of nonlinearities, the
the constraints. We determine critical valuesdaf and  rate of excitation transfer out of the initial state generally
o for energy to flow, revealing the central role of high- differs from that of transfer out of most other states. To
order resonances to ergodicity; regimes where energy flodifferentiate them, we refer to the initial state, with all
occurs primarily via vibrational superexchange are als@xcitation in any one mode, as an edge state; and to
identified. the vast majority of states close in energy and having at
The approach we adopt generalizes one used by LW [4nost ¢ quanta in any mode as interior states. Figure 1
who studied a many-dimensional low-order Fermi resonanilustrates distinctions between flow among interior states
system under different initial conditions where each oscil-and flow from an edge state to the interior.
lator is excited to moderate energies, drawing analogies The energy and site self-energy are separated into their
between their model and the theory of Anderson localizareal and imaginary parts
tion in many dimensions. Their detailed analysis based .
on a probabilistic self-consistent theory is most directly re- E = E +in,  S;(E) = E;(E) + iA;(E), (4)
lated to the Anderson problem on a Cayley tree [13], where

only direct low-order resonant couplings among zero—orde\Nhere the imposed external dephasings taken to be

states of a tight-binding Hamiltonian are considered. I1t/€"Y small. Assume initially that all states are local-
g 9 ed at energyE, thus A;(E) « 5. E;(E) and A;(E)

has been shown that the complete probabilistic analysis f
equivalent for the Anderson problem on the Cayley treef en read [16]

to other field theoretic approaches based on the supersym- d d

metric nonlinears model [14]. In our system, however, J Z Ejm Aj= Z Aj s
transitions often occur via off-resonant states at low en- M=2 M=2
ergy, so that a Cayley tree topology is not immediately ap-

parent. Moreover, at low energies the action space is no

(5a)

Eju = Z VieXi -+ Xq V) »

longer statistically homogeneous, so other simplifications q q
used by LW must be removed. This lack of statistical ho- R I T
mogeneity reflects the polyad structure of these nonlinear Bjm k,;,q Vi Vq"|:azk Bl,:!&a)xﬁ Yo :| - ()
models, which has been studied extensively by molecular .
spectroscopists [15]. X;=[E—-¢—-EI]",
Information about whether an eigenstate overlapping .
site | j) with energy E is localized or extended is Y; =[E — ¢ — Ej](n + A)). (5¢)
contained in the solution to the renormalized Feenberg
perturbation series for the site self-energy [9,13] Inthe limit u; = n + A; — o, the Mth-order terms are
. (/) -1 q
() =3 ValE =~ = SNV Ew— S ij,,,vqj[ S xu [] Mﬁl}’
kil,...q a=k B=k(#a)

+ VilE —e — SV (E) Y, ¢
1; l;j al 1= 87 (E)] Vi Ajy = Z Vi Vy; l_[I“’al' (6)
X[E—e—S B WV +-. @ |
We determine criteria for flow among interior states,
then treat the problem of flow out of an edge state. For
_ _ _ interior states we may assume the probability distribution
Sjm(E) = Z Vicer 'Viie ' Vim - ey Ve @) of S;(E) is the same for all sites; whether a state is lo-
bt calized or not can be determined using (5) and invok-
The sums are restricted to nonrepeating paths, .65,  ing self-consistency for the joint probability distribution
.l # k,j, etc; ande, = E — €, — SY*)(E), where  F(E;, A;; €;) with  — 0 when states are localized. Self-
(jkI) of S,(E) denotes that these sites are removeconsistency can be alternatively demanded from both lo-
from its summation. In the analysis of;(E) on a calized and extended sides of the transition, which has
Cayley tree, only the first sum in (2) is retained, andthe merit of yielding finite-value solutions td(E;e;)
an additional assumption introduced whereby expressiongs well as incorporating dephasing effects expressed in

for S;(E) are conflated, i.e.§; = S;k) = S;kl), etc. For terms of finite values ofy. Mathematical treatment of
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solution to f(A; €;) is obtained by Fourier transforming,
averaging over the disorder, then back transforming [4].
TN A To make this procedure tractable, we substitite of
............... Eq. (5) with its average(X;), interpreted to be the typi-
A N cal inverse level spacing between the initial state and
L o off-resonant levels directly coupled to it. This approach
. Interior [N has been successfully applied in determining effects of
.. .] .. band structure on transport in disordered solid state sys-
i e B tems [16]. We finally obtain foA™)(E; ¢;) in the limit
m—0,

A €)) = T(E; €;) u(E; €))

Direct
Exchange

2
= |:Z IK’Q(E;fj):| w(Ese;), (7)
K,Q

where k denotes order of perturbation agis the total
guantum number change in a transition. Retaining the two
FIG. 1. lllustration of energy flow in the state space of lowest-order terms, and lowest orderVinfor each,
the anharmonic oscillator Hamiltonian. Commencing from a
vertex energy flows via numerous virtual transitions and direct ce)) = ‘e
couplings dgg to high-order resonances, to more and more states fo(Es €)) = KollVolDr(Es €)). (82)
toward the interior. Direct and virtual transitions contribute to
flow in the interior as indicated. hol(E;€;) = Z K10V Y(X)Dr(E; €;);  (8b)

I

Edge

Ko is the number of resonant states a distaden
both localized and extended regimes is made tractablguantum number space from the initial stakg;, is the
as detailed in Ref. [4], by demanding a weaker self-connectivity to resonant states via off-resonant states a
consistency in which the most probable valueAdE; ;)  distancel from the initial statey, = ¢30>~%; Dr(E; €;)
only is self-consistently determined. This is done by subis the density of levels coupled resonantly [t¢), and
stituting A,,,(E; €;) into Y; of Eq. (5) and intou, of is assumed to be a Lorentzian whose width reflects the
Eq. (6), definingu(E;€;) = n + A,,(E;€;). Thus in dispersion ofw,.
the limit © — 0, the most probable value & must lie In the limit © — 0, A,,, is again found by demanding
atA = A,, — 0, whereby]| j) is localized. Considering self-consistency. An adequate interpolation 25, be-
first the u — 0 limit, we write the probability distribution tween the limits ofu — 0 andu — <0 is made by substi-
for A(E; €;), f(A; €;), using (5) and (6) to fourth order. A] tuting for 70(E; ;) the simple Padé approximant [4]

(int - e
AS(E;s €)= T(E; €)) [1 #
A - >0 Kg (Vo)

-1
2<E;e,,-)} WEse). ©)

Whether a state is localized or extended depends! oorders ofA(E;e;) and o we find for A<€dge) asn — 0
WhetherA“m)(E €;) is 0 or finite in the limitn — 0.  the relation
It is apparent that the only solution fod,, when (Cd 0 (it)
T (E; €;) < 1is 0, whereas a finite value fa,,, and Anp(Es €)) = T(E; €))A,,0(E; €;)
thus ergodic flow among interior states obtains when the
sum is greater than the transition value of 1. Finite values int
of A%P in the extended regimd;(")(E; €;) > 1, can be = [thK’l(E?fj)} A )(E €;), (10a)
estimated using Eq. (9). ©

We turn finally to the initial condition of one oscillator - X, 17!
of Hy excited tom = N” quanta,0 < y < 1, with tei(Es €)) = ZKmJ<V2”1/K>K[DR(E.E.)} + (10b)
the others in their ground state. One state among the " o
nearest set of states resonant to the initial one has K, ; is the connectivity to théth set of resonant states,
previously unexcited oscillators excited goquanta; one [ = 1 being the set closest in quantum number space
among the next tier has, oscillators excited, and so on. to the edge, via off-resonant states a distancdrom
Proceeding as above, we expre‘s(gdge)(E €;) in terms  the edge stateV, = Vi,Dk(E;€;). The criterion for
of its coupling to both interior and other edge states. Thesnergy to flow from the edge state to isoenergetic states
former are seen to dominate the rate, so that combininthus amounts to whether or not the interior states are
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- \ flow to be intimately related to the dynamical tunneling

.| Direct Superexchange mechanism conjectured by Heller and Davis [10], though
Exchange Fast flow to interior in some respects our approach does not completely ad-

-3 N ee—m— — — — — — 7 dress their conjecture. To do so would require determin-

. — — ——— —— — —

o T . ing rates for tunneling not between the unperturbed tori

) discussed here, but among the exact Kolmogorov-Arnold-
Mosher tori in many dimensions. Our understanding of
many-dimensional quantum energy flow would greatly
benefit from numerical studies, which have proven in-

b Interior Stat valuable towards elucidating quantum ergodic properties
Loenined of low-dimensional systems [1]. Computational studies
of specific molecules at low energy [11,12] as well as an

' N : e *  investigation [5] simulating energy flow in a random non-

o N 3 linear oscillator system implicate an energy flow mecha-
FIG. 2. Solid lines are critical values of = ¢3Dg(E;€) nism analogous to the one here.

separating localized from extended states as a functien &r . . .
the model withy = 0.35, 8 = 0.70. From top to bottomy — The authors acknowledge helpful discussions with
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