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Many-Dimensional Quantum Energy Flow at Low Energy
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Criteria for ergodicity and rates of energy flow in a quantum mechanical system ofN coupled
anharmonic oscillators whereN is large are determined at energies near the ground state of
system. High-order resonances are important for the transition at largeN . The role of numerous
virtual transitions, “vibrational superexchange,” in global transport is examined both for typical pa
the state space and special states often interrogated experimentally.

PACS numbers: 05.30.–d, 05.45.+b, 34.30.+h
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Understanding the origin and nature of irreversibili
in finite quantum systems is an ongoing pursuit. T
path toward establishing criteria for ergodicity in qua
tum systems of low dimension has been guided by the c
respondence principle limit of classical dynamics [1–
Because of their inherently large state space, howe
many-dimensional quantum systems may be usefully
scribed by statistical concepts such as ergodicity eve
low excitation. Still, much less is known about the natu
of quantum energy flow in many-dimensional systems [
6]. Quantum ergodicity and the rate of equilibration pla
moreover, a central role in dynamical theories of fin
many-body systems such as nuclei, molecules, and c
ters. Insight into the nature of quantum energy flow can
drawn from the numerous studies in few dimensions, s
as the relationship to classical chaos and the possibility
its quantum mechanical suppression. Much attention
focused on driven systems [7] and two coupled anharmo
oscillators [8], where finitēh corrections to the semiclas
sical limit localize the quantum system to only part of i
energetically allowed space while the corresponding cl
sical system can roam freely throughout it. The nature
quantum irreversibility in many-oscillator systems is le
well understood, but there are strong indications that qu
tum suppression of chaos also occurs whenN is large.
Logan and Wolynes (LW) [4] have put forward argu
ments suggesting high dimensional systems of nonline
coupled oscillators undergo a localization transition akin
the Anderson transition [9] of single particle transport
disordered systems. In many-dimensional systems qu
tum effects may also permit flows prohibited by classic
mechanics. Heller and Davis [10] conjectured that in lar
molecules, enabled by a high density of states, vibratio
relaxation could occur among all energetically availab
modes via a classically forbidden mechanism they cal
“dynamical tunneling,” that allows transitions among i
variant tori to which classical motion would be otherwis
confined. In quantum systems of high dimension, not o
h̄ but alsoN serves as a parameter tuning the transition
ergodicity. Seeking to address the interplay between
namical tunneling and localization, in this Letter we e
plore the origins and extent of quantum irreversibility
low energy, in a system that mimics in some respects la
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molecules or clusters. We find criteria for ergodicity an
rates of energy flow amongN coupled anharmonic oscilla-
tors, whereN is large, at energies near the ground state
the system, i.e., much below that at which a typical osc
lator has even a single quantum of excitation. The mo
contains very high-order nonlinear resonant processes
play a crucial role. At low total energy, energy flow ca
involve numerous virtual transitions in state space; in so
sectors a large number are needed to bridge two reso
states. This process, called “vibrational superexchang
has been the subject of recent investigations [11,12] sc
tinizing vibrational energy transfer in specific molecule
such ast-butylacetylene and 1-propyne. The role of v
brational superexchange towards energy flow in our mod
and the contribution of high-order resonances to a tran
tion to global flow at low energies is elucidated below.

We study a system ofN oscillators with total excitation
reaching no more thanm  Ng quanta,0 , g , 1, so
that the system lies near its ground state. The Hamilton
is H  H0 1 V , where

H0 
NX

a1

easn̂ad , (1a)

V 
X
m

Y
a

fmby
ai

m1
i bai

m2
i , (1b)

a  ha1, a2, . . .j andm  hm6
1 , m6

2 , . . .j. H contains not
only the familiar low-order Fermi resonances but al
higher-order direct resonances that we assume sa
a scaling relation [12],fm  s21dpf3s32p sp $ 3d,
wherep 

P
i1sm1

i 1 m2
i d. Eachp-tuple of coupling

terms in (1b) is taken from a set ofZp  Ndp, 0 #

d # 1, oscillators to which a given oscillator can directl
couple. Whend  1 each oscillator couples directly to
all others, while ford , 1 H is sparse, thereby introduc
ing additional locality to excitation transfer; the effectiv
local density of states,rlsEd, to which a zero-order state
of H couples is much smaller than the global level de
sity, rgsEd, for large N when d , 1. The number op-
erator is defined bŷna  by

aba , and oscillators ofH0
have frequencyvasnad  h̄21≠easnady≠na and nonlin-
earityv0

asnad  h̄21≠vasnady≠na. As a simple model,
we assumēh2jv0

aj ø h̄va , andva random with a small
© 1996 The American Physical Society
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but nonvanishing dispersion. The former restricts the ro
nonlinearities have in the local level densities, while th
latter constrains all oscillators to have similar frequencie
and primarily affects the superexchange mechanism.H
is thus represented by an ensemble of random matric
with oscillator frequencies, nonlinearities, and couplin
terms all chosen from probability distributions satisfyin
the constraints. We determine critical values off3 and
s for energy to flow, revealing the central role of high
order resonances to ergodicity; regimes where energy fl
occurs primarily via vibrational superexchange are al
identified.

The approach we adopt generalizes one used by LW
who studied a many-dimensional low-order Fermi resona
system under different initial conditions where each osc
lator is excited to moderate energies, drawing analog
between their model and the theory of Anderson localiz
tion in many dimensions. Their detailed analysis bas
on a probabilistic self-consistent theory is most directly r
lated to the Anderson problem on a Cayley tree [13], whe
only direct low-order resonant couplings among zero-ord
states of a tight-binding Hamiltonian are considered.
has been shown that the complete probabilistic analysi
equivalent for the Anderson problem on the Cayley tre
to other field theoretic approaches based on the supers
metric nonlinears model [14]. In our system, however
transitions often occur via off-resonant states at low e
ergy, so that a Cayley tree topology is not immediately a
parent. Moreover, at low energies the action space is
longer statistically homogeneous, so other simplificatio
used by LW must be removed. This lack of statistical h
mogeneity reflects the polyad structure of these nonlin
models, which has been studied extensively by molecu
spectroscopists [15].

Information about whether an eigenstate overlappi
site j jl with energy E is localized or extended is
contained in the solution to the renormalized Feenbe
perturbation series for the site self-energy [9,13]

SjsEd 
X

ksfijd
VjkfE 2 ek 2 S

s jd
k sEdg21Vkj

1
X
kfij

X
lfikj

VjlfE 2 el 2 S
s jkd
l sEdg21Vlk

3 fE 2 ek 2 S
s jd
k sEdg21Vkj 1 · · · , (2)

where each orderM of S is

Sj,MsEd 
X

k,l,...,q

Vjke21
k Vkle

21
l Vlm · · · e21

q Vqj . (3)

The sums are restricted to nonrepeating paths, i.e.,k fi

j, l fi k, j, etc.; andem  E 2 em 2 Ss jkld
m sEd, where

s jkld of SmsEd denotes that these sites are remov
from its summation. In the analysis ofSjsEd on a
Cayley tree, only the first sum in (2) is retained, an
an additional assumption introduced whereby expressi
for SjsEd are conflated, i.e.,Sj ; S

skd
j ; S

skld
j , etc. For
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our model, however, (2) cannot be truncated before
least the lowest-order terms coupling the initial state
states resonant to it. It is also apparent that a probabi
distribution for SjsEd of an initial state, say,jm000 · · ·l,
may be very different from that of most isoenerget
states. The latter typically hasn excited modes, each with
only a few quanta,q , 1. Because of nonlinearities, the
rate of excitation transfer out of the initial state general
differs from that of transfer out of most other states. T
differentiate them, we refer to the initial state, with a
excitation in any one mode, as an edge state; and
the vast majority of states close in energy and having
most q quanta in any mode as interior states. Figure
illustrates distinctions between flow among interior stat
and flow from an edge state to the interior.

The energy and site self-energy are separated into th
real and imaginary parts

E  Ẽ 1 ih, SjsEd  EjsEd 1 iDjsEd , (4)

where the imposed external dephasingh is taken to be
very small. Assume initially that all states are loca
ized at energyE, thus DjsEd ~ h. EjsEd and DjsEd
then read [16]

Ej 
X̀

M2

Ej,M , Dj 
X̀

M2

Dj,M , (5a)

Ej,M 
X

k,l,...,q

VjkXk · · · XqVqj ,

Dj,M 
X

k,l,...,q

Vjk · · · Vqj

"
qX

ak

qY
bksfiad

XbYa

#
, (5b)

Xj  fẼ 2 ej 2 Ejg21,

Yj  fẼ 2 ej 2 Ejg22sh 1 Djd . (5c)

In the limit mj ; h 1 Dj ! `, theMth-order terms are

Ej,M 
X

k,l,...,q

Vjk · · · Vqj

"
qX

ak

X21
a m22

a

qY
bksfiad

m21
b

#
,

Dj,M 
X

k,l,...,q

Vjk · · · Vqj

qY
ak

m21
a . (6)

We determine criteria for flow among interior state
then treat the problem of flow out of an edge state. F
interior states we may assume the probability distributio
of SjsEd is the same for all sites; whether a state is lo
calized or not can be determined using (5) and invo
ing self-consistency for the joint probability distribution
FsEj , Dj; ejd with h ! 0 when states are localized. Self
consistency can be alternatively demanded from both
calized and extended sides of the transition, which h
the merit of yielding finite-value solutions toDsE; ejd
as well as incorporating dephasing effects expressed
terms of finite values ofh. Mathematical treatment of
217
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FIG. 1. Illustration of energy flow in the state space
the anharmonic oscillator Hamiltonian. Commencing from
vertex energy flows via numerous virtual transitions and dir
couplings due to high-order resonances, to more and more s
toward the interior. Direct and virtual transitions contribute
flow in the interior as indicated.

both localized and extended regimes is made tracta
as detailed in Ref. [4], by demanding a weaker se
consistency in which the most probable value ofDsE; ejd
only is self-consistently determined. This is done by su
stituting DmpsE; ejd into Yj of Eq. (5) and intoma of
Eq. (6), definingmsE; ejd ; h 1 DmpsE; ejd. Thus in
the limit m ! 0, the most probable value ofD must lie
at D  Dmp ! 0, wherebyj jl is localized. Considering
first them ! 0 limit, we write the probability distribution
for DsE; ejd, fsD; ejd, using (5) and (6) to fourth order. A
t
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solution tofsD; ejd is obtained by Fourier transforming
averaging over the disorder, then back transforming [
To make this procedure tractable, we substituteXj of
Eq. (5) with its average,kXjl, interpreted to be the typi-
cal inverse level spacing between the initial state a
off-resonant levels directly coupled to it. This approa
has been successfully applied in determining effects
band structure on transport in disordered solid state s
tems [16]. We finally obtain forDsintd

mp sE; ejd in the limit
m ! 0,

Dsintd
mp sE; ejd  T sintdsE; ejdmsE; ejd



"X
k,Q

tk,QsE; ejd

#2

msE; ejd , (7)

wherek denotes order of perturbation andQ is the total
quantum number change in a transition. Retaining the
lowest-order terms, and lowest order inV for each,

t1,QsE; ejd  KQkjVQjlDRsE; ejd , (8a)

t2,QsE; ejd 
X

l

Kl,QkjVQy2jl2kXllDRsE; ejd ; (8b)

KQ is the number of resonant states a distanceQ in
quantum number space from the initial state;Kl,Q is the
connectivity to resonant states via off-resonant state
distancel from the initial state;Vk  f3s32k; DRsE; ejd
is the density of levels coupled resonantly toj jl, and
is assumed to be a Lorentzian whose width reflects
dispersion ofva .

In the limit m ! 0, Dmp is again found by demanding
self-consistency. An adequate interpolation forDmp be-
tween the limits ofm ! 0 andm ! ` is made by substi-
tuting for T sintdsE; ejd the simple Padé approximant [4]
Dsintd
mp sE; ejd  T sintdsE; ejd

∑
1 1

T sintdsE; ejdP
Q K

1y2
Q kjVQjl

m2sE; ejd
∏21

msE; ejd . (9)
,
ce

tes
re
Whether a state is localized or extended depends
whether Dsintd

mp sE; ejd is 0 or finite in the limit h ! 0.
It is apparent that the only solution forDmp when
T sintdsE; ejd , 1 is 0, whereas a finite value forDmp and
thus ergodic flow among interior states obtains when
sum is greater than the transition value of 1. Finite val
of Dsintd

mp in the extended regime,T sintdsE; ejd . 1, can be
estimated using Eq. (9).

We turn finally to the initial condition of one oscillato
of H0 excited to m  Ng quanta, 0 , g , 1, with
the others in their ground state. One state among
nearest set of states resonant to the initial one han1
previously unexcited oscillators excited toq quanta; one
among the next tier hasn2 oscillators excited, and so on
Proceeding as above, we expressDsedged

mp sE; ejd in terms
of its coupling to both interior and other edge states. T
former are seen to dominate the rate, so that combin
on

he
es

he

e
ng

orders ofDsE; ejd and s we find for Dsedged
mp as h ! 0

the relation

Dsedged
mp sE; ejd  T sE; ejdDsintd

mp sE; ejd



"X
k,l

tk,lsE; ejd

#2

Dsintd
mp sE; ejd , (10a)

tk,lsE; ejd 
X
m

Km,lkṼ2nlyklk

∑
kXml

DRsE; ejd

∏
k21

; (10b)

Km,l is the connectivity to thelth set of resonant states
l  1 being the set closest in quantum number spa
to the edge, via off-resonant states a distancem from
the edge state;Ṽk  VkDRsE; ejd. The criterion for
energy to flow from the edge state to isoenergetic sta
thus amounts to whether or not the interior states a
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FIG. 2. Solid lines are critical values of̃V  f3DRsE; ed
separating localized from extended states as a function ofs, for
the model withg  0.35, d  0.70. From top to bottom,N 
54, 100, and166. Dashed curves indicate crossover from slo
to fast flow from an edge state to the interior. Short das
separate the region where flow out of the initial state occ
via vibrational superexchange from that where direct coupl
dominates.

extended. If they are extended, then flow throughout
state space at energyE is permitted. Crispness of th
transition to global flow depends on whetherrlsEd ,

rgsEd, enforced whenZ  Nd andd , 1. Whend  1,
the transition may not be sharp but rather a crossove
direct global flow, a situation resembling cases contain
single bottlenecks to flow [8].

Results for our model are summarized in Fig. 2, whe
critical values of the cubic couplingf3 separating lo-
calized from extended states are plotted againsts, the
rate of exponential decrease in magnitude of high
order coupling terms, for different numbers of oscillato
listed below the figure. Also shown are regions of fa
fT sE; ejd . 1g and slow fT sE; ejd , 1g energy flow to
interior states. Figure 2 illustrates the relevance of high
order resonances to the transition asN gets large. Low-
order terms suffice to determine the transition to glob
flow only when s . Nd. In Fig. 2 this is seen as the
larger values ofs required to approach saturation in th
transition curves asN increases. Physical values fors

often range between 3 and 10 [12], pointing up the imp
tance of high-order resonances to energy flow for the s
tems plotted in Fig. 2. Generally in the thermodynam
limit high-order resonances are responsible for achiev
ergodicity.

We have hereby established criteria and rates for
godic flow among energetically accessible states o
many-dimensional oscillator system at energies near
ground state. We have examined the contributions
high-order resonances to global flow, which is found
occur above a transition threshold. We believe this ene
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flow to be intimately related to the dynamical tunnelin
mechanism conjectured by Heller and Davis [10], thou
in some respects our approach does not completely
dress their conjecture. To do so would require determ
ing rates for tunneling not between the unperturbed t
discussed here, but among the exact Kolmogorov-Arno
Mosher tori in many dimensions. Our understanding
many-dimensional quantum energy flow would grea
benefit from numerical studies, which have proven
valuable towards elucidating quantum ergodic propert
of low-dimensional systems [1]. Computational studi
of specific molecules at low energy [11,12] as well as
investigation [5] simulating energy flow in a random no
linear oscillator system implicate an energy flow mech
nism analogous to the one here.
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