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We report on a microscopic theory of the Skyrmion states that occur in the quantum Hall reg
The theory is based on the identification of Skyrmion states in this system with zero-energy eigen
of a hard-core model Hamiltonian. We find that forNf orbital states in a Landau level, a set o
Skyrmion states with orbital degeneracyNf 2 K and spin quantum numberS ­ Ny2 2 K exists
for each non-negative integerK. The energetic ordering of states with differentK depends on the
interaction potential.
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The ground state of a two-dimensional electron syste
(2DES) in the strong magnetic field regime of the qua
tum Hall effect is ferromagnetic at certain values of th
Landau level filling factorn. (n ; NyNf whereN is the
number of particles,Nf ­ AeByhc ; Ay2p,2 is the or-
bital degeneracy of the Landau levels, and, is used below
as the unit of length.) The simplest example of a qua
tum Hall ferromagnet (QHF) occurs atn ­ 1, where the
ground state is a strong ferromagnet with total spin qua
tum numberS ­ Ny2. Phenomena associated withspon-
taneousmagnetic order are open to experimental stu
in QHF’s, despite the strong magnetic fields, because
Zeeman coupling to the electronic spins is smaller th
other typical energy scales of the system and can e
be tuned to zero, for example, by application of hydr
static pressure to the host semiconductor. QHF’s ha
the unusual property, first identified in finite-size exa
diagonalization studies [1] and dramatically evident in r
cent Knight shift spin-polarization measurements [2], th
S can be sharply reduced [3], in appropriate circumstanc
even toS ­ 0, by the addition or removal of a single elec
tron. This behavior may be explained [4] using a nonli
ears modelsNLsd continuum field theory description of
QHF’s. In two dimensions, the NLs model supports spin
texture excitations, known as Skyrmions, that carry a u
quantized topological charge [5]. In QHF’s, Skyrmion
also carry an electrical charge [4,6,7] equal to the pro
uct of the ground state filling factor and the topologic
charge. This implies that Skyrmions will be present
the ground state forn close but not equal to1, explaining
[3] the reduction in the spatially averaged moment.

While the NLs model provides a pleasing qualitativ
explanation of the spin-polarization experiments, it cann
be used to address quantitative issues. It is valid only
slowly varying spin textures, while the Zeeman coupling
experimentally relevant fields favors small Skyrmion stat
with only a few reversed spins and relatively rapid vari
tion in the spin-moment orientation. Recent microscop
Hartree-Fock [3,7] estimates of the optimal Skyrmion si
agree well with experiment [2], further bolstering evidenc
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for unit charge, large spin, quasiparticles of then ­ 1 fer-
romagnetic ground state. In this Letter we report on an
dependent, fully microscopic, picture of QHF Skyrmion
In addition to giving an alternate physical picture of the
exotic quasiparticles, our approach has the advantage
we are able to determine precisely the quantum numb
and multiplicities of all Skyrmion states.

The approach we have taken is in the same spirit
the illuminating outlook on the spin-polarized fractiona
quantum Hall effect that arises from appropriate har
core model Hamiltonians [8,9]. As discussed for th
case of interest below, these models have zero-ene
many-particle eigenstates that are often known analy
cally, are separated from other many-particle states b
finite gap, and have a degeneracy that decreases with
creasingN . The incompressible state responsible [1
for a quantum Hall effect transport anomaly in suc
a model is the nondegenerate maximumN zero-energy
eigenstate. The zero-energy eigenstates at lower dens
constitute the portion of the spectrum that involves on
the degrees of freedom of, in general, the fractiona
charged [11] quasiholes of the incompressible state.
is assumed that the difference between the model Ham
tonian and the true Hamiltonian is a sufficiently wea
perturbation that the quasihole states are still well se
rated from other states in the Hilbert space, although
cidental degeneracies will be lifted in the spectrum
the true Hamiltonian. Here we apply this approach
n ­ 1. Our principal results may be summarized as fo
lows. The zero-energyN-fermion eigenstates for a sin
gle hole in a Landau level may be mapped to a set
N-boson states in which the bosons are allowed to o
cupy only four single-particle states. Single-hole stat
exist with total spin numberS ­ Ny2 2 K for each non-
negative integerK and in the absence of disorder an
Zeeman coupling have degeneracyg ­ gorb gspin, where
gspin ­ 2S 1 1 is the spin multiplicity, and the orbital
degeneracygorb ­ N 1 1 2 K .

For our analysis we use the symmetric gauge in whi
the single-particle orbitals [10] in the lowest Landau lev
© 1996 The American Physical Society 2153
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fmszd ­
zm

s2m11pm!d1y2
exps2jzj2y4d , (1)

where [12] m ­ 0, 1, . . . , Nf 2 1, z ­ x 1 iy, and
x and y are the Cartesian components of the tw
dimensional coordinate. We study here the hard-c
model for which the interaction is [13]

V ­ 4pV0

X
i,j

ds2ds$ri 2 $rjd . (2)

At strong magnetic fields the low-energy Hamiltonian
simply the projection of this interaction onto the lowe
Landau level [8]. Many-particle wave functions that a
zero-energy eigenstates of this Hamiltonian must van
when any two particles are at the same position and m
therefore have the difference coordinate for each pair
particles as a factor

Cfz, xg ­

"Y
i,j

szi 2 zjd

#
CBfz, xg . (3)

We note that the each complex coordinate appears
the power N 2 1 in the factor in square brackets i
Eq. (3) and that this factor is completely antisymmetr
It follows that CBfzg must be a wave function forN
bosonsand that these bosons can be in states with ang
momenta from0 to Nf 2 N . This simple observation
leads to the conclusions we reach below.

First, we consider the case of a filled Landau lev
N ­ Nf. In this case all bosons must be in orbita
with m ­ 0. CBfz, xg must then be proportional to a
symmetric many-particle spinor and therefore have to
spin quantum numberS ­ Ny2. The orbital part of the
fermion wave function can be recognized as the Sla
determinant with all orbitals fromm ­ 0 to m ­ Nf 2 1
occupied. We are able to conclude that the grou
state is a strong ferromagnet with no orbital degenera
The ease with which this conclusion can be reach
contrasts markedly with the case of the Hubbard mo
where enormous effort has yielded relatively few fir
results [14]. When Zeeman coupling is included in t
Hamiltonian the ground state will be the member of th
multiplet for which all spins are aligned with the magnet
field, i.e., the state withSz ­ S ­ Ny2.

Our primary interest here is in the elementary charg
excitations of the ferromagneticn ­ 1 ground state
that occur atN ­ Nf 6 1. For the case of a single
hole sN ­ Nf 2 1d the lowest energy states are th
zero-energy eigenstates of the hard-core model.
will see that they are the quantized version of t
charged Skyrmion states in the NLs model description of
quantum Hall ferromagnets [4]. From Eq. (3) it follow
that these states can be mapped to spin-1y2 N-boson
states, where the bosons can have angular momen
equal to 0 or 1. In understanding these states it
helpful to start from the state with boson occupat
numbersn1" ­ N, n1# ­ 0, n0" ­ 0, andn0# ­ 0. Using
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Eq. (3) we see that the corresponding fermion state
fermion occupation numbersnm" ­ 1 for m ­ 1, . . . , Nf

and n0" ­ 0, nm# ; 0, i.e., it is the fully polarized state
with a single hole in them ­ 0 orbital. This state is
the unique state in the one hole Hilbert space with t
maximum possible total boson angular momentumsM ­
Nd and the maximumSz s­Ny2d. The set of boson
states with angular momentumM ­ N 2 dM andSz ­
Ny2 2 dSz have boson occupation numbers satisfying

n0# 1 n0" ­ dM ,

n0# 1 n1# ­ dSz . (4)

For fixed dM and dSz, the state may be specified b
n0#, which can assume values from0 to the mimimum of
dM anddSz; the number of states isgsdSz, dMd ­ 1 1

inf fdSz, dMg. We now deduce the total spin quantu
numbers of the quasihole states from this expression.

Since the Hamiltonian is spin rotationally invarian
S2 and Sz must be good quantum numbers, so th
all eigenstates occur in spin multiplets with degenera
2S 1 1 for total spin S. Furthermore, assuming tha
edge effects are irrelevant, the Hamiltonian is invaria
under simultaneous translation of all coordinates.
follows that dM is also a good quantum number, an
that each member of a spin multiplet has associated w
it a large orbital degeneracy that scales with the syst
size. Orbitally degenerate states can be generated f
a seed state with minimumdM by repeated application
of the operator that lowers the center-of-mass angu
momentum [15]. For example, whenSz ­ Ny2 this
procedure generates holes that occur in successively la
single-particle angular momentum states.

TheSz ­ Ny2 2 1 manifold has one state withdM ­
0 and two states for eachdM $ 1. One state at each
dM is theSz ­ Ny2 2 1 member of theS ­ Ny2 spin
multiplet with the samedM. It follows that there is one
S ­ Ny2 2 1 spin multiplet with an orbital degenerac
that is reduced by one compared to theS ­ Ny2 states.
Continuing in the same way, we may conclude that the
is a single spin multiplet withS ­ Ny2 2 K for each
non-negative integerK with orbital degeneracyNf 2 K .
Thus the quantized Skyrmion states occur in degene
manifolds labeled by an integerK and with dimension
sNf 2 Kd sN 2 2K 1 1d. The spin degeneracysN 2

2K 1 1d is lifted by the Zeeman coupling and is th
quantum counterpart of the arbitrary global orientation
a classical Skyrmion. The orbital degeneracysNf 2 Kd
is the quantum counterpart of the arbitrary location
the center of a classical Skyrmion and is lifted by
disorder potential. The density of Skyrmion states
the presence of Zeeman coupling and weak disorde
indicated schematically in Fig. 1.

Repeated application of the total spin lowering ope
tor and the center-of-mass lowering operator allows
states in theS ­ Ny2 2 K manifold to be generated
from the seed state that hasSz ­ S and dM ­ K. To
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FIG. 1. Schematic single Skyrmion density of states. For quasihole states the orbital degeneracy for eachS ­ Ny2 2 K,
K ­ 0, 1, 2, . . . , and Sz ­ 2S, . . . , S is lifted by disorder producing a finite width band of states. The spin-multiplet struct
persists in the presence of disorder. The energetic offset of bands with the sameK and differentSz is due to Zeeman coupling.
For the situation illustrated, the Zeeman spin-splitting energy is comparable to the disorder produced band width. The dep
of theSz ­ S energy onK depends on the interaction Hamiltonian and the strength of the Zeeman coupling; the situation illus
where the lowest energy state occurs atSz ­ S ­ Ny2 2 3, is typical. TheSz ­ S ­ Ny2 2 5 band has been removed from
this illustration for clarity.
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raising operator,S1, on theK 1 1 boson states that occu
at dM ­ dSz ­ K
S1jn0# ­ k, n0" ­ K 2 k, n1# ­ K 2 kl

­
1X

m­0

b
y
m"bm#jn0# ­ k, n0" ­ K 2 k, n1# ­ K 2 kl

ø
q

sK 2 kdN jn0# ­ k, n0" ­ K 2 k, n1# ­ K 2 k 2 1l . (5)
lar
ion

op-
e-

e

n-
Here by
m and bm are boson creation and annihilatio

operators. In the last form of Eq. (5) we have includ
only the m ­ 1 term that dominates for finiteK and
N ! ` because

p
n1" ø

p
N ¿ 1. In this limit the state

with k ­ K is annihilated byS1 and is therefore the see
state of theS ­ Ny2 2 K Skyrmion multiplet. In first
quantization the (unnormalized) boson wave function
this state is

jCSK
K l ­

X
0

i1,...,iK

" Y
j[hiK j

j #lj exps2jzjj
2y4d

#

3

" Y
l]hiK j

j "llzl exps2jzlj
2y4d

#
. (6)

In these wave functions, the sums are over distinct part
indices, up-spin quasiparticles occupy states with ang
momentumm ­ 1, whereas down-spin particles occup
d

f

le
ar

m ­ 0 states; this correlation between spin and angu
momentum states is an essential aspect of Skyrm
states [3,7].

We now establish some relationships between the pr
erties of these wave functions and previously known r
sults. As explained above, theK ­ 0 Skyrmion wave
function is identical to a Hartree-Fock quasihole. On th
other hand, the largeK limit of the these wave functions
may be related to classical field theory Skyrmions. Co
sider the fermion wave function

jCsldl ­
X̀

K­0

lK jCSK
K l

­
Y
i,j

szi 2 zjd
Y

l

szlj "ll 1 lj #lld

3 exps2jzl j
24d . (7)
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The equivalence between the two expressions forjCsldl
is easily established by identifying the coefficient oflK

in
Q

lszlj "ll 1 lj #lld For large l, the sum in Eq. (7)
will be dominated by terms in a relatively narrow ran
of K values [16]. jCsldl is precisely the single Slate
determinant proposed by Moonet al. [7] as a microscopic
trial wave function for the Skyrmion on the grounds th
for large l, it gives a spin texture in precise agreeme
with that of the classical Skyrmion [4] of sizel.

The more general Hartree-Fock (HF) single-Slat
determinant wave functions of Ref. [3] may be written
the form

jCHFl ­
Y
m

sumc
y
m# 1 ymc

y
m11"dj0l . (8)

The HF approximation is equivalent to minimizing th
energy of this wave function subject to a normalizati
constraint. An obvious deficiency of the Hartree-Fo
approximation is its failure to reflect known symmetri
of the Hamiltonian. In particular, the Hartree-Fock wa
function is not an eigenstate ofSz or M. As discussed by
Nayak and Wilczek [17], this failure is readily remedie
by projecting the Hartree-Fock state onto a state
definiteSz (and, therefore, definiteM). For the hard-core
model, the HF equations [3] may be solvedanalytically,
with the result jumj2 ­ 1 2 jymj2 ­ l2yfl2 1 2sm 1

1dg, where l is a free parameter. It is easily verifie
that the corresponding wave function is preciselyjCsldl.
In the case of the hard-core model the projection of
Hartree-Fock wave function onto a state of definiteSz

yields the exact Skyrmion wave functions, suggesting t
this seeminglyad hoc procedure might be genericall
accurate.

We remark that all the results we have obtained h
to a hole in the ferromagnetic ground state apply equ
well to the case of a particle added to the ferromagn
ground state because of an exact particle-hole symm
[18] that holds nearn ­ 1. For the case of the hard-cor
model the energy of the particle states is4V0, independent
of K . Our analysis is also readily generalized for fra
tional filling factorsn ­ 1ym, although in that case th
quasiparticle states cannot be generated by particle-
transformation. For general interactions the Skyrmion
ergy is dependent onK ; the minimum energy state ma
occur atK ­ 0 where Hartree-Fock theory is valid, a
K ! ` where the classical field theory becomes valid,
at an intermediate value ofK where explicit expression
for the energy are not available. The many-particle wa
functions that we have derived for the Skyrmion sta
are exact only for the hard-core model. The accuracy
these wave functions for general interactions, which
been confirmed by exact diagonaliztion [19], rests on
existence of a gap for charged excitations, and they
2156
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in this sense, analogous to Laughlin’s trial wave functio
for incompressible states at fractional filling factors.
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