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Using the Majorana fermion representation, we consider a compactified Anderson imp
model, which has a non-Fermi-liquid weak-coupling fixed point. The impurity free energy,
energies, and vertex function are perturbatively formulated in terms of Pfaffian determin
A linear temperature dependence of the electrical resistivity is obtained from the second
perturbation. In the third order ofU, the vertex function is found to be logarithmic divergent.
summation of the leading logarithmic terms gives a new weak-coupling low-temperature energy
Tc ­ D expf2 1

9 s pD

U d2g.

PACS numbers: 75.15.Qm, 71.45.–d, 75.15.Nj
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Strongly correlated electron systems, especially
high-Tc cuprate superconductors, have been the focus
intense investigation. The unusual normal state of th
materials has been ascribed to a non-Fermi-liquid (NF
state. Its microscopic origin remains to be established
may hold the key to understanding the nature of the sup
conductivity. It has recently been suggested that cer
heavy fermionU-based superconductors may also exhi
NFL behavior due to the interaction between the cond
tion electrons and the localized impurity [1]. One cha
acteristic behavior of the NFL is the linear temperatu
dependence of the electrical resistivity. Lattice models
these systems are very difficult to solve and so far ther
no generally accepted explanation for this behavior. I
purity models which display NFL behavior may provid
valuable insights. They are more accessible and mos
them have been found to have exact solutions. In t
context, the two-channel Kondo model is of particular i
terest, as it has been shown to have NFL thermodyna
behavior. The exact solution for this model, obtain
from conformal field theory [2], gives a resistivity o
rsT d ­ rs0ds1 2 a

p
T d in the low-temperature limit, in

contrast to the experimental observations on Y12xUxPd3
[3]. The question arises, therefore, whether a linear te
perature dependence of resistivity can be found in a
single-impurity model.

In this Letter, we consider a compactified Anders
single-impurity model introduced from the usual symme
ric Anderson model by breaking down the symmetry fro
O(4) to O(3) in the hybridization. A new perturbation th
ory is constructed around the weak-coupling fixed poi
In contrast to the two-channel Kondo model, the line
temperature dependence of the electrical resistivity is
tained from second order perturbation theory. The v
tex function is logarithmically divergent in the third orde
in U.

The ordinary symmetric Anderson impurity model ca
be expressed in the form
0031-9007y96y76(12)y2137(4)$10.00
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H ­ it
X
n,s

fCy
ssn 1 1dCssnd 2 H.c.g

1 iV
X
s

fCy
ss0dds 2 H.c.g

1 Usdy
" d" 2

1
2 d sdy

# d# 2
1
2 d , (1)

where the symmetric conditioned ­ 2Uy2 has been
used, and the chemical potential is set to zero. [The f
tor i can be absorbed in a redefinition of the phase of
conduction electron states but is convenient for the f
mulation of the Hamiltonian Eq. (2).] The Hamiltonia
has O(4) symmetry due to the SU(2) symmetry from t
spin rotational invariance and an additional SU(2) fro
particle-hole symmetry, giving Os4d , SUs2d ≠ SUs2d.
The O(4) symmetry can be displayed explicitly when t
fermions of each type of spin are expressed in terms
four Majorana fermions [4]

C"snd ­
1

p
2

fC1snd 2 iC2sndg, d" ­
1

p
2

sd1 2 id2d ,

C#snd ­
1

p
2

f2C3snd 2 iC0sndg, d# ­
1

p
2

s2d3 2 id0d .

These new operators satisfyhCasnd, Cbsn0dj ­ da,bdn,n0

andhda , dbj ­ da,b. Breaking down the symmetry from
O(4) to O(3) in the hybridization, the model becomes

H ­ it
X
n

3X
a­0

Casn 1 1dCasnd 1 iV0C0s0dd0

1 iV
3X

a­1

Cas0dda 1 Ud1d2d3d0 , (2)

where V0 fi V . In the large U limit, a Schrieffer-
Wolff transformation can be applied generating ans-d
type of model: the so-called compactified two-chann
Kondo model, where the local impurity spin couples
both the conduction electron spin and the conduct
electron “isospin” (charge) density. WhenV0 ­ 0, the
two exchange couplings are identical and it had be
conjectured that this form of the model has the same lo
energy excitations as the two-channel Kondo model [5
© 1996 The American Physical Society 2137
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To distinguish the model in the form of Eq. (2) fro
others, we will refer to it as the compactified Anders
impurity model. Here we concentrate on theV0 ­ 0 case.
Fourier transforms for the conduction electrons can
introduced as usual

Casnd ­
1

p
N

X
k

Caskdeikxn , a ­ 0, 1, 2, 3 , (3)

whereN is the total number of the sites. The antico
mutation relation for the conduction electrons becom
hCaskd, Cbs2k0dj ­ da,bdk,k0 . The new symmetry in
hybridization is the key feature of this model. Since
scalar field (a ­ 0) of the conduction electrons decoupl
from the local impurity, its propagator defined by retard
double-time correlation function is easily found to
a free propagator: kkC0skdjC0s2k0dll ­

dk,k0

ivn2ek
, where

ek ­ 2t sinskad is the dispersion relation of the co
duction electrons,a is the lattice spacing,vn ­ s2n 1

1dpyb, andb is the inverse of the temperature. The v
tor field Caskd (a ­ 1, 2, 3) hybridizes with the impurity
vector fieldda , and the scattering of the conduction ele
trons from the local impurity is given by the followin
relation:

kkCaskdjCas2k0dll

­
dk,k0

ivn 2 ek
1

V 2

N
Gvecsvnd

sivn 2 ekd sivn 2 e2k0d
, (4)

where Gvecsvnd is the Fourier transform of the vecto
propagator2kTtdastddast0dlH . The conduction electro
t matrix is thus expressed astsvnd ­

V 2

N Gvecsvnd, and
the electrical resistivity will be determined by the impur
vector field propagator only.

Before considering the effects of interactions, it
useful to examine the unperturbed partH0 (U ­ 0). The
impurity Green functions are easily obtained

G0svnd ­
1

ivn
, Gasvnd ­

1
ivn 1 iD sgnvn

,

where D ­ prV2 is the hybridization width
r ­ shyfd21 is the conduction electron density
states, andvn ­ s2n 1 1dpyb. Here we find that the
impurity scalar propagator is a fermionic zero mode w
G0std ­ 2sgnty2, and both propagators are odd in th
arguments. The local impurity spectral function is giv
by Adsvd ­

3
2p

D

v21D2 1
1
2 dsvd, and reveals the bas

physics of the unperturbed Hamiltonian. The change
conduction electron’s free energy due to the hybridiza
is F

s0d
imp ­

3
2p

R`

2` fsvd tan21s D

v d dv 2
T
2 ln 2, where

fsvd is Fermi distribution function, and the impuri
2138
e

s

f

residue entropy is ln
p

2, reflecting the unusual impurit
spectral function. Since the impurity spin and cha
density operators can be defined

Sz
d ­

1
2

sdy
" d" 2 d

y
# d#d ­ 2

i
2

sd1d2 2 d0d3d ,

nd ­
1
2

sdy
" d" 1 d

y
# d# 2 1d ­ 2

i
2

sd1d2 1 d0d3d ,

(5)

the spin and charge density-density correlation functi
are equal and their Fourier transforms are

xr,ssvnd ­
1

4b

X
vn0

fGasvn0dGasvn 2 vn0d

1 Gasvn0dG0svn 2 vn0 dg , (6)

wherevn ­ 2npyb is the bosonic Matsubara frequenc
The first term in the brackets corresponds to the n
mal FL-like density-density spectrum, but the seco
term is anomalous. As far as the singularity is co
cerned, the imaginary part of the spectral functions is
tained:x 00

r,ssv, Td ­ 2
1
8

D

v21D2 tanhs v

2T d. Whenv ø T ,
x 00

r,s , vyT , while for v ¿ T , x 00
r,s , constant. Such

a behavior was assumed by the marginal FL phenome
ogy [6], and it is believed the ordinary FL theory has b
ken down.

Now we consider the perturbed Hamiltonian. T
partition function is expressed as a power series ofU:

ZyZ0 ­
X̀
n­0

Un
Z b

0
dtn

Z tn

0
dtn21 · · ·

Z t2

0
dt1

3 Fnstn, . . . , t1d ,

where Z0 denotes the partition function for the u
perturbed Hamiltonian, and the thermodynamic
erage is carried out over the unperturbed partH0,
expressed ask· · ·l. Noting that inH0 the four Majorana
components of the local impurity decouple complete
Fnstn, tn21, . . . , t1d can be factorized as

kd0stnd · · · d0st1dl
3Y

a­1

kdastnd · · · dast1dl .

When the Wick theorem is implemented, it can
verified order by order that each Majorana expecta
average can be represented by a Pfaffian determin
For the expectations of impurity vector operators,
Pfaffian determinant [7] is defined by the square root
an antisymmetric determinant composed of the impu
vector propagatorGastd,
ØØØØØØØØØØ
0, Gast1 2 t2d, Gast1 2 t3d, . . . , Gast1 2 tnd

Gast2 2 t1d, 0, Gast2 2 t3d, . . . , Gast2 2 tnd
...

...
...

...
Gastn 2 t1d, Gastn 2 t2d, Gastn 2 t3d, . . . , 0

ØØØØØØØØØØ
­ nDnst1, t2, ...., tndj2.
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Since the impurity vector propagators are odd in
argument, Gastr 2 tsd ­ 2Gasts 2 trd for r . s and
Gastr ­ tsd ­ 0. Then,nDnst1, t2, . . . , tndj is given by

j Gast1 2 t3d, . . . , Gast1 2 tnd
Gast2 2 t3d, . . . , Gast2 2 tnd

...
Gastn21 2 tnd

ØØØØØØØØØØ
­

P
6Gast1 2 tadGastb 2 tcd . . . Gastl 2 tmd,

where the subscripts1, a, b, c, . . . , l, m of each term unde
the summation are a permutation of the firstn integers,
each Green functionGastr 2 tsd hass . r , all differ-
ent terms of this type are included, and the total num
of terms is sn 2 1d!!. The sign attached to each ter
is positive or negative according to whether the perm
tion is even or odd. The basic property of the Pfaffi
determinant is that all odd-order determinants identic
vanish. On the other hand, the impurity scalar propa
tor has a special formG0std ­ 2sgnty2, and the cor-
responding expectation iskd0st2ndd0st2n21d · · · d0st1dl ­
s 1

2 dn because the imaginary time sequence has bee
sumedb . t2n . t2n21 . · · · . t2 . t1 . 0. There-
y

ar
r

-

y
-

s-

fore, the partition function forH is formulated by the cube
of the Pfaffian determinant. According to the linked clu
ter theorem, the free energy associated with the local
purity is given by

Fimp ­ F
s0d
imp 2

X̀
n­1

µ
U
p

2

∂2n 1
b

Z b

0
dt2n

Z t2n

0
dt2n21

3 · · ·
Z t2

0
dt1hnD2nst1, . . . , t2ndjj3

l , (7)

where the subscriptl on the bracket indicated that on
linked diagrams are to be considered. For the ordin
symmetric Anderson model with O(4) symmetry (V0 ­
V ), the power of the Pfaffian determinant in the free e
ergy is four rather than three [8], thus one power cor
sponds to each of the Majorana fermions involved in
hybridization. The first singular contribution to the fre
energy comes from the second order ofU, and the impu-
rity specific heat is singularCimp ø p2

2 s U
pD d2 T

pD lns D

T d in
the limit T ø D.

The perturbed propagator for the impurity scalar field
defined asGscst, t0d ­ 2kTtd0stdd0st0dlH . As we treated
the partition function, the perturbed scalar propagato
its Fourier transform can be expanded in powers ofU:
Gscsvnd ­ G0svnd 1
X̀
n­1

U2n

b

Z b

0
dt

Z b

0
dt0

Z b

0
dt2n

Z t2n

0
dt2n21 · · ·

Z t2

0
dt1eivnst2t 0d

3 hkTtd0stdd0st0dd0st2nd · · · d0st1dlnD2nst1, . . . , t2ndj3jl . (8)

RecallG0std ­ 2sgnty2, the expectation value2kTtd0stdd0st0dd0st2nd · · · d0st1dl can be calculated as√
1
2

!n21 X
i,j

s21di1j
©
G0st 2 tidG0st0 2 tjd 2 G0st 2 tjdG0st0 2 tid

™
1

√
1
2

!n

G0st 2 t0d.

Then completing the integrals overt and t0, we obtain Gscsvnd ­ G0svnd 1 G0svndS0
scsvndG0svnd, where an

improper self-energy is represented as

S0
scsvnd ­

X̀
n­1

4i
b

µ
U
p

2

∂2n Z b

0
dt2n · · ·

Z t2

0
dt1

X
i,j

©
s21di1jfsinvnsti 2 tjdgnD2nst1, . . . , t2ndj3

™
l . (9)
f the
In the second order ofU, the self-energy for the impurit
scalar field can be obtainedS0

scstd ­ 2U2G3std corre-
sponding to a diagram (a) in Fig. 1. The imaginary p
of its retarded Fourier transform is

ImS0
scsv, T d ø 2

pU2

2spDd3 fv2 1 spT d2g .
t

Such a self-energy ensures the fermionic zero mode o
scalar field inH0 is preserved.

The impurity vector propagatorGvecst, t0d is defined as
similar way, andGvecsvnd can be written as
Gvecsvnd ­ Gasvnd 1
X̀
n­1

µ
U
p

2

∂2n 1
b

Z b

0
dt

Z b

0
dt0

Z b

0
dt2n

Z t2n

0
dt2n21 · · ·

Z t2

0
dt1eivnst2t0d

3
©
kTtdastddast0ddast2nd · · · dast1dlnD2nst1, . . . , t2ndj2

™
l .

The average2kTtdastddast0ddast2nd · · · dast1dl is evaluated as follows:X
i,j

s21di1j
©
Gast 2 tidGast0 2 tjd 2 Gast 2 tjdGast0 2 tid

™
nD

ij
2nj 1 Gast 2 t0dnD2nj ,
p-
where nD
ij
2nj is the so-calledcofactor of Pfaffian deter-

minant nD2nj. Then we perform the integrals overt
andt0, and get the equation of the impurity vector pro
agator,Gvecsvnd ­ Gasvnd 1 GasvndS0

vecsvndGasvnd,
2139
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FIG 1. Diagrams (a) and (b) are the second order correct
for impurity scalar and vector self-energies, respective
Diagram (c) is the logarithmic contribution to the vert
function in the order ofU3. The dotted lines describeG0std
and the solid lines areGastd.

where the improper self-energy is

S0
vecsvnd ­

X̀
n­1

2i
b

µ
U
p

2

∂2nZ b

0
dt2n · · ·

Z t2

0
dt1

3
X
i,j

hs21di1jfsinvnsti 2 tjdgnD
ij
2nst1, . . . , t2ndj

3 nD2nst1, . . . , t2ndj2jl . (11)
In the second order ofU, the self-energy is found to b
S0

vecstd ­ 2U2G2stdG0std corresponding to a diagram
(b) in Fig. 1. We have to calculate its spectral functi
carefully because there is a singularity in thev ­ 0 limit,
and the result is

ImS0
vecsv, Td ­ 2

p

2

√
U

pD

!2

jvjcoth

√
jvj

2T

!
.

In the case ofjvj ø T , the imaginary part of the retarde
self-energy isImS0

vec , 2s U
pD d2spT d, while for jvj ¿ T ,

it becomesImS0
vec , 2

p

2 s U
pD d2jvj. Such a self-energy

greatly differs from the form given by the FL theory.
The self-energy is usually referred to the proper s

energy, which is related to the improper one bySsvnd ­
S0svndf1 1 G0svndS0svndg21. As far as the secon
order contributions are concerned, it is not necessar
distinguish the improper self-energy from the proper o
Thus there is also a temperature dependent contribu
to ImSvecs0, Td, and the conduction electront matrix
includes this temperature dependence as well. Assum
the conduction electrons incoherently scatter from
dilute magnetic impurities, the total number is assum
to be Nimp, and the linear response theory allows t
electrical conductivity to be expressed as

ssT d ­ 2
2
3

e2y2
fr

Z `

2`

tsv, Td
≠f
≠v

dv , (12)

hereyf is the Fermi velocity of the conduction electro
with chargee and density of statesr, and tsv, T d is
the electron relaxation time, which is related to thet
matrix t21 ­ 22NimpImtsv, T d. On substituting the
second order result for the impurity vector self-ener
the electrical resistivity is found to be

rsT d ø
3pnimp

e2

∑
1 1

µ
U

pD

∂2µpT
D

∂∏
,

where nimp is impurity concentration. The linear tem
perature dependence is the consequence of the anom
Svecsvnd, andsuch a resistivity makes the weak coupli
fixed point of the present model differ from the strong c
pling fixed point of the two-channel Kondo model.

In fact the method of evaluating the single-partic
correlation functions can be applied further to the tw
2140
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particle vertex functions. The nontrivial two-particle co
relation function iskTtd0stdd1st0dd2st00dd3st000dlH . Fol-
lowing similar treatments, we find the expression f
G

0
0,1,2,3sv, v0, v00, v000d, and when all the frequencies ar

set to zero, the improper vertex function is given by

G0
0,1,2,3s0d ­

X̀
n­1

p
2

b

µ
U
p

2

∂2n21 Z b

0
dt2n21 · · ·

Z t2

0
dt1

3

ΩX
i

s21dinDi
2n21st1, . . . , t2n21dj

æ3

l
. (14)

To first order in U, G
0s1d
0,1,2,3s0d ­ 2U, while to order

U3, a logarithmic singularity appears and its leadi
contribution given by a diagram (c) in Fig. 1 is foun
to beG

0s3d
0,1,2,3s0d ø 23Us U

pD d2 lns D

T d in the limit T ø D.
The proper vertex function has the same singularity
well, which implies that the higher order terms in th
perturbation expansion have important contributions to
low-temperature behavior, so the marginal FL behav
must break down at very low temperatures. When all
leading logarithmic terms are summed, a characteri
temperatureTc ­ D expf2 1

9 s pD

U d2g is found [9], below
which the NFL state of the weak coupling fixed point
unstable; while forT . Tc, the low order perturbation
results can be justified. In this respect, like the ordina
Kondo problem, the logarithmic divergent vertex pos
a new problem as to the nature of the stable grou
state of this compactified Anderson model and its lo
temperature behavior. In addition, so far it is not cle
under what circumstances one can expect the symm
breaking in the hybridization to occur. O(4) symmet
in the symmetric Hubbard model at half filling is know
to be reduced to O(3) upon doping. These problems
currently under investigation.

In conclusion, we have developed a Pfaffian pertur
tion expansion appropriate for the Majorana formalism
the compactified Anderson impurity model, and the line
temperature dependence of the electrical resistivity is
tained in the second order theory.
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