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Using the Majorana fermion representation, we consider a compactified Anderson impurity
model, which has a non-Fermi-liquid weak-coupling fixed point. The impurity free energy, self-
energies, and vertex function are perturbatively formulated in terms of Pfaffian determinants.
A linear temperature dependence of the electrical resistivity is obtained from the second-order
perturbation. In the third order of/, the vertex function is found to be logarithmic divergent. A
summation of the leading logarithmic terms gives a new weak-coupling low-temperature energy scale

T. = Aexd—5(% ).

PACS numbers: 75.15.Qm, 71.45.—d, 75.15.Nj

Strongly correlated electron systems, especially the H = irZ[Cl(n + 1)C,(n) — H.c]
high-T,. cuprate superconductors, have been the focus of n.o
intense investigation. The unusual normal state of these ; + _
materials has been ascribed to a non-Fermi-liquid (NFL) * zVZ[C(,(O)d[, H.c]
state. Its microscopic origin remains to be established and 1 1
pic orlg + Ul d — D dld — ), 1)

may hold the key to understanding the nature of the super- h h . dit . » has b
conductivity. It has recently been suggested that certaiffNere the symmetric conditior; = —U/2 has been
heavy fermionU-based superconductors may also exhipit!S€d: and the chemical potential is set to zero. [The fac-

NFL behavior due to the interaction between the conduct-ori can be absorbed in a redef.inition of t_he phase of the
conduction electron states but is convenient for the for-

tion electrons and the localized impurity [1]. One char- X . o
purity [1] mulation of the Hamiltonian Eq. (2).] The Hamiltonian

acteristic behavior of the NFL is the linear temperature
dependence of the electrical resistivity. Lattice models Opas O(4) symmetry due to the SU(2) symmetry from the

these systems are very difficult to solve and so far there PN rotational invariance and an additional SU(2) from

no generally accepted explanation for this behavior. Imparticle-hole symmetry, 9“’"!9 @) ~ SU(2) e Su).
purity models which display NFL behavior may provide The O(4) symmetry can be displayed explicitly when the

valuable insights. They are more accessible and most farmil\(/)lng of eafch type ozspin are expressed in terms of
them have been found to have exact solutions. In thisPUr Viajorana ermions [4]

context, th.e two-channel Kondo model is of particular in-' Ci(n) = 1 [Wy(n) — iWy(n)], dy= 1
terest, as it has been shown to have NFL thermodynamic V2 V2
behavior. The exact solution for this model, obtained 1 ] 1 ]

from conformal field theory [2], gives a resistivity of Cl(”):_z[_q'3(")_lq'0(”)]’ dl:ﬁ(_‘h —ido) .
p(T) = p(0)(1 — a\/f) in the low-temperature limit, in  These new operators satig¥ o (n), W5(n')} = S48
contrast to the eXperImental observations erxYJdej and{da’dﬁ} = 5a,,8- Break|ng down the Symmetry from

[3]. The question arises, therefore, whether a linear temo4) to O(3) in the hybridization, the model becomes
perature dependence of resistivity can be found in any 3

(dy — id>),

single-impurity model. H=itY > Voln + DV, (n) + iVoWe(0)do

In this Letter, we consider a compactified Anderson noa=l
single-impurity model introduced from the usual symmet- + iV Z V,(0)d, + Ud\drds3dy, (2)
ric Anderson model by breaking down the symmetry from =

=1
0O(4) to O(3) in the hybridization. A new perturbation the- where Vo # V. In the large U limit, a Schrieffer-
ory is constructed around the weak-coupling fixed pointWolff transformation can be applied generating sd
In contrast to the two-channel Kondo model, the lineartype of model: the so-called compactified two-channel
temperature dependence of the electrical resistivity is obKondo model, where the local impurity spin couples to
tained from second order perturbation theory. The verboth the conduction electron spin and the conduction
tex function is logarithmically divergent in the third order electron “isospin” (charge) density. Whén, = 0, the

inU. two exchange couplings are identical and it had been
The ordinary symmetric Anderson impurity model canconjectured that this form of the model has the same low-
be expressed in the form energy excitations as the two-channel Kondo model [5].
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To distinguish the model in the form of Eq. (2) from residue entropy is I/, reflecting the unusual impurity
others, we will refer to it as the compactified Andersonspectral function. Since the impurity spin and charge
impurity model. Here we concentrate on tig= 0 case. density operators can be defined
Fourier transforms for the conduction electrons can be

X 1 .
introduced as usual SE = > (dTTdT — dfdl) = —é(dldz — dods),
1 .
Vo(n) = —= > V(e , a=01,23, (3)
w2

1 i
g = 5(d;rd1 +dld 1) = 5 (didy + dods).
where N is the total number of the sites. The anticom-
i i ) (5)
mutation relation for the conduction electrons becomes
Wo(k), Wp(—k')} = 6a56kk. The new symmetry in the spin and charge density-density correlation functions
hybridization is the key feature of this model. Since theare equal and their Fourier transforms are
scalar field & = 0) of the conduction electrons decouples !

from the local impurity, its propagator defined by retarded Xo.o(@n) = — E [Golwp)Galwy — @)
Lt h . . . P, 43
double-time correlation function is easﬂg found to be oy
a free propagator: ((Wo(k)|Wo(—k))) = 75, where + Golw,)Golw, — wy)], (6)

€, = 2tsin(ka) is the dispersion relation of the con- . .

duction electronsg is the lattice spacingw, = (2n +  Wherew, = 2n/p is the bosonic Matsubara frequency.
1)7r/ B, and 8 is the inverse of the temperature. The vec-The flrst.term in 'the brapkets corresponds to the nor-
tor field ¥, (k) (a = 1,2,3) hybridizes with the impurity mal FL-like density-density spectrum, but the second

vector fieldd,,, and the scattering of the conduction eiec-{€'M IS anomalous. As far as the singularity is con-
trons from the local impurity is given by the following cerned, the imaginary part of the spectral functions is ob-

relation: tained:y, ,(w,T) = —%ﬁtanl{%). Wheno < T,
, )(,’,’,[, ~ /T, while forw > T, X[’,”g ~ constant. Such
(o (k) Wa (=) a behavior was assumed by the marginal FL phenomenol-
Sk V2 Gee(@),) ogy [6], and it is believed the ordinary FL theory has bro-

(4)  ken down.
Now we consider the perturbed Hamiltonian. The

where Gye.(@,) is the Fourier transform of the vector partition function is expressed as a power serie& of
propagator—(T,d.(7)d.(7"))y. The conduction electron

iwn — €k F (iwn - fk) (ia)n - E_k/) ’

2 * :B Tn T2
t matrix is thus expressed asw,) = VﬁGvec(CL)n), and Z/Zy = Z U"f dT”f dr,— ] dr
the electrical resistivity will be determined by the impurity n=0 0 0 0
vector field propagator only X Fp(Tny... 71)s

Before considering the effects of interactions, it is - _
useful to examine the unperturbed pHg (U = 0). The Where Z, denotes the partition function for the un-

impurity Green functions are easily obtained perturbed Hamiltonian, and the thermodynamic av-
1 1 erage is carried out over the unperturbed pafs,
Go(w,) = —, Gulw,) = - - , expressed aé --). Noting that inH, the four Majorana
iw, iw, + iA sgnw,

components of the local impurity decouple completely.
where A = 7pV? is the hybridization width, F,(r,,7,—1,...,71) can be factorized as
p = (hvy)~! is the conduction electron density of

3
states, andv, = (2n + 1)7/B. Here we find that the (do(1y) - - do(71)) l_[<da(7n)---da(7'1)>.
impurity scalar propagator is a fermionic zero mode with a=1
Go(r) = —sgn7/2, and both propagators are odd in their \when the Wick theorem is implemented, it can be

arguments. Ehe local imlpurity spectral function is givenyerified order by order that each Majorana expectation

by Ai(w) = 572752 + 26(w), and reveals the basic average can be represented by a Pfaffian determinant.
physics of the unperturbed Hamiltonian. The change ofor the expectations of impurity vector operators, the

condu(g:tlon electron’s free energy due to the hybridizatiorpfaffian determinant [7] is defined by the square root of

is Fl(m)p = % ffmf(w)tanfl(%)dw - %In 2, where an antisymmetric determinant composed of the impurity

f(w) is Fermi distribution function, and the impurit)( vector propagato6, (7),

0, Go(m1 — 1), Golri — 13), ..., Golri — 7))
Gol(my — 71), 0, Golma — 713), ..., Gulm2 — 7))

: : : : = \DW(TI9727 eeeey Tﬂ)lz'
Ga(Tn - 7'1), Ga(Tn - 7-2)7 Ga(Tn - 7-3)7 cees 0
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Since the impurity vector propagators are odd in itsfore, the partition function fof is formulated by the cube

argument, G, (7, — 7,) = —G.(7, —7,) for r>s and of the Pfaffian determinant. According to the linked clus-

Go(m, =7,)=0. Then\D,(7{,72,...,7,)| is given by ter theorem, the free energy associated with the local im-
purity is given by

| Ga(Tl - T3)s ) Ga(Tl - Tn) ) mn 1
Go(m2a = 73), ..., Galra — 7)) Fimp = Fi(r?l)p — < ) f de”f dTay—
Ga(Tnfl - Tn) Xoene 0 dTl{\DZn(Th-n’TZn)l}l ) (7)

= ZiGa(Tl - Ta)Ga(Tb - Tc)-~-Ga(Tl - Tm)s . .

where the subscript on the bracket indicated that only
where the subscripts a, b, c, ..., [, m of each term under linked diagrams are to be considered. For the ordinary
the summation are a permutation of the finstntegers, symmetric Anderson model with O(4) symmetry,(=
each Green functioiG, (7, — 7,) hass > r, all differ- V), the power of the Pfaffian determinant in the free en-
ent terms of this type are included, and the total numbeergy is four rather than three [8], thus one power corre-
of terms is(n — 1)!!. The sign attached to each term sponds to each of the Majorana fermions involved in the
is positive or negative according to whether the permutahybridization. The first singular contribution to the free
tion is even or odd. The basic property of the Pfaffianenergy comes from the second orderlhfand the lmpu-
determinant is that all odd-order determinants identicallytity specific heat is singulaCim, =~ 5 ( A)2 = In( ) in
vanish. On the other hand, the impurity scalar propagathe limit 7 < A.
tor has a special fornGo(r) = —sgn7/2, and the cor-  The perturbed propagator for the impurity scalar field is
respondmg expectation {@o(72,)do(T2,—1) - do(71)) =  defined a$G (7, 7/) = —(T,do(7)do(7'))y. As we treated
( )" because the |mag|nary time sequence has been ahe partition function, the perturbed scalar propagator in
sumed,B > Ty > Top—1 > -+- > 70 > 71 > 0. There-  its Fourier transform can be expanded in powerg/of

2n B B B Tn T2 . ,
] dT] dT/] drznf drzn_1-~-f drietnm=)
B Jo 0 0 0 0

Gy (w,) = Go(w,) + Z
n=1

X LT, do(T)do(T")do(72,) - - - do(T1))\Dan(71, ..., T2,) P} 8)
RecallGy(r) = —sgn7/2, the expectation value (T, dy(7)do(7")do(2,) - - - do(71)) can be calculated as
n—1 ;
(%> > (=1 H{Gol(r = 7)Go(r" = 7)) = Golr = 7))Go(r" = 7)} + (%) Go(r — 7).
i<j

Then completing the integrals over and 7/, we obtain Gy.(w,) = Go(w,) + Go(w,)2l (0,)Go(w,), where an
improper self-energy is represented as

i 2n B 7 o
o= ¥ ( I) fo - fo dr S {1 sinwn(r; — 7)N\Dan(r o)l (9)

n=1 i<j

In the second order df, the self-energy for the impurityI Such a self-energy ensures the fermionic zero mode of the

scalar field can be obtained!.(r) = —U>G3(r) corre-  scalar field inH, is preserved.
sponding to a diagram (a) in Fig. 1. The imaginary part The impurity vector propagatd¥... (7, ') is defined as
of its retarded Fourier transform is similar way, andG..(w,) can be written as
/ wU
=~ 2 4+

® 2n
1 2 : /
Gvec(wn) = Ga(wn) + ( > ] dT] dr’ f dTan d7o,-1- ] dTlelw”(TiT)

n=1
X {(T‘rda(T)da(T )doz(TZn) o da(71)>\D2n(Tl’ ) T2n)| }l~
The average-(T,d,(7)d,(7)d.(12,) - - - do(71)) is evaluated as follows:
S (=D {Galr = 7)Ga(r' = 7)) = Galr = 7)Ga(r' = T)ND| + Galr = T)\Daul,

i<j

where \Dé’,;l is the so-calleccofactor of Pfaffian deter- and 7/ , and get the equation of the impurity vector prop-
minant \D,,|. Then we perform the integrals over agator,G.(w,) = Gu(w,) + Golw,) 2l (@0,)Go(wy),
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@ () © particle vertex functions. The nontrivial two-particle cor-
@ P . ) relation function is(T,do(7)d;(7))d>(7")ds(7""))y. Fol-
2 lowing similar treatments, we find the expression for

! .
FIG 1. Diagrams (a) and (b) are the second order correction§,123(@, @', 0", ®™), and when all the frequencies are
for impurity scalar and vector self-energies, respectively.set to zero, the improper vertex function is given by

Diagram (c) is the logarithmic contribution to the vertex 2 J2/ U\ kB )
function in the order ofU*. The dotted lines describ6(r) ['),500) = Z —<—> ] d7on—1 f dr
and the solid lines ar&, (7). T = B \V2 0
3
where the improper self-energy is X {2(_1) \Dy (71 72”1)|}l' (14)
. - 2i( U\" (P m : , 0 :
S(w)=> = Ny dryy -+ dry To first order in U, Ty ,3(0) = —U, while to order
n=1 0 0 U3, a logarithmic singularity appears and its leading
> Z{(_l)i+j[sinw (r; _T_)]\th'j (t10e . 7)) contribution given by a diagram (c) in Fig. 1 is found
= e to beT)155(0) ~ —3U(%)*In(%) in the limit 7 < A.
X \Don(71, ..., 720)%} . (12) The proper vertex function has the same singularity as

well, which implies that the higher order terms in the
perturbation expansion have important contributions to the
low-temperature behavior, so the marginal FL behavior
must break down at very low temperatures. When all the
leading logarithmic terms are summed, a characteristic
(U \ o] temperaturel, = Aexp[—é %)2] is found [9], below
Im3., (0, T) = Y (_A) lecotf<—) which the NFL state of the weak coupling fixed point is

) . ) 2r unstable; while forT > T., the low order perturbation
In the case ofw| <7, the imaginary part of the retarded regyits can be justified. In this respect, like the ordinary
self-energy iSmX{.. ~ —(73)*(#T), while forlo[>T,  Kondo problem, the logarithmic divergent vertex poses
it becomesIm3/,. ~ —7(55)*lw|. Such a self-energy a new problem as to the nature of the stable ground
greatly differs from the form given by the FL theory. state of this compactified Anderson model and its low-

The self-energy is usually referred to the proper selftemperature behavior. In addition, so far it is not clear
energy, which is related to the improper one®{w,) =  under what circumstances one can expect the symmetry
3wyl + Go(w,)2(w,)]"'. As far as the second breaking in the hybridization to occur. O(4) symmetry
order contributions are concerned, it is not necessary tim the symmetric Hubbard model at half filling is known
distinguish the improper self-energy from the proper oneto be reduced to O(3) upon doping. These problems are
Thus there is also a temperature dependent contributiocurrently under investigation.
to Im23,..(0,7), and the conduction electron matrix In conclusion, we have developed a Pfaffian perturba-
includes this temperature dependence as well. Assumingpbn expansion appropriate for the Majorana formalism of
the conduction electrons incoherently scatter from thehe compactified Anderson impurity model, and the linear
dilute magnetic impurities, the total number is assumedemperature dependence of the electrical resistivity is ob-
to be Ninp, and the linear response theory allows thetained in the second order theory.
electrical conductivity to be expressed as We are grateful to R. Bulla for useful discussions and

* to the SERC for th t of h t.
o(T) = _%ezv%p[ T(w,T)g_f do. (12) o the SERC for the support of a research gran
: w

herev; is the Fermi veloc}ty of the conduction electrons

with chargee and density of statep, and 7(w,T) is [1] D.L. Cox, Phys. Rev. Lett59, 1240 (1987).
the electron relaxation time, which is related to the [2] |. Afflect and A.W.W. Ludwig, Nucl. Phys.360, 641

In the second order of/, the self-energy is found to be
3. (1) = —U2G?*(7)Gy(7) corresponding to a diagram
(b) in Fig. 1. We have to calculate its spectral function
carefully because there is a singularity in the= 0 limit,
and the result is

matrix 7! = —2NimpImt(w,T). On substituting the (1991); Phys. Rev. B8, 7297 (1993).
second order result for the impurity vector self-energy, [3] C.L. Seamaret al., Phys. Rev. Lett67, 2882 (1991); B.
the electrical resistivity is found to be Andraka and A. M. Tsvelikibid. 67, 2886 (1991).
37 Nimp U N2/ #T [4] P. Coleman and A.J. Schofield, Phys. Rev. Lég. 2184
o = =1+ (5 ()] Qose

s : : : _ [5] P. Coleman, L. loffe, and A. M. Tsvelik, Phys. Rev.22,
where niy, is impurity concentration. The linear tem 6611 (1995)

perature dependence is the consequence of the anomanLllgj C.M. Varmaet al., Phys. Rev. Lett63, 1996 (1989)

2ec(@,), andsuch a resistivity makes the weak coupling [7] H.S. Green and CA HursOrder-Di:sorder Phenomena

fixed point of the present model differ from the strong cou- " * (|nterscience Publishers, New York, 1964).

pling fixed point of the two-channel Kondo madel [8] K. Yosida and K. Yamada, Prog. Theor. Phy6, 244
In fact the method of evaluating the single-particle (1970);ibid. 53, 1286 (1975).

correlation functions can be applied further to the two- [9] Guang-Ming Zhang and A. C. Hewson (to be published).

2140



