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Formation of Avalanches and Critical Exponents in an Abelian Sandpile Model
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The structure of avalanches in the Abelian sandpile model on a square lattice is analyzed. It
shown that an avalanche can be considered as a sequence of waves of decreasing sizes. Being m
simple objects, waves admit a representation in terms of spanning trees covering the lattice sites. T
difference in sizes of subsequent waves follows a power law with the exponenta simply related to the
basic exponentt of the sandpile model. Using known exponents for the spanning trees, we derive from
scaling argumentsa ­ 3y4 andt ­ 5y4.

PACS numbers: 64.60.–i, 05.40.+j, 05.60.+w, 46.10.+z
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The sandpile model was introduced in the work [
by Bak, Tang, and Wiesenfeld to manifest the nature
“self-organized criticality” (SOC). The Abelian versio
of the model became most popular because it turned
to be analytically tractable [2]. Several characterist
of the Abelian sandpile were evaluated exactly: the to
number of allowed configurations in the SOC state [
the fractional number of sites having a given height [3,
some height-height correlation functions [3,5], and t
expected number of topplings at a given site due to
particle added at another one [2].

Nevertheless, exact values of exponents characteri
avalanche processes remained unknown. The distr
tion of avalanches obeys the power lawPsSd , S2t in
which S is the number of distinct sites toppled durin
the relaxation. Exponents corresponding to the mass
linear extent of avalanches can be expressed in te
of t [6,7]. Initial simulation studies of sandpiles [1
gave t ­ 1. The first theoretical predictions based o
a continuous-energy model [8] and a Flory-like appro
imation [9] justified this result. Later on, Manna [10
undertook large-scale simulations and obtained the va
t ­ 1.22. Meanwhile, the data of the majority of nume
ical experiments were roughly consistent witht ­ 7y6
[6]. Simple mean-field arguments by Christensen a
Olami [7] led to a somewhat smaller valuet ­ 23y21.

Recently, Pietronero, Vespignany, and Zapperi [1
presented a renormalization scheme of a new type
allowed them to estimate critical exponents of the sandp
model. They obtainedt ­ 1.253.

Determination oft needs a detailed analysis of th
relaxation process. It would be desirable to represent
whole avalanche as a series of more elementary ev
and to expresst via auxiliary exponents. The first ste
in this direction has been made by Dhar and Man
who introduced the notion of inverse avalanches [1
It was soon shown that there exists a direct proced
leading to the same representation of avalanches [
New objects, being basic elements of the avalanche, w
termed “waves of topplings.”
0031-9007y96y76(12)y2093(4)$10.00
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In this Letter, we use the wave construction for findin
the critical exponents of the 2D Abelian sandpile mode
We will show that a typical avalanche can be consider
as a sequence of waves of decreasing sizes. Each
evolved into a wave topples only once. This permi
us to define a spanning tree representation for wav
and to find their distribution exactly. The difference i
sizes of subsequent wavesDs also follows the power
law Ds , sa, wheres is the size of the wave and the
exponenta is simply related tot. The problem of
evaluationa can be formulated in terms of spanning tree
or, equivalently, of theq-component Potts model in the
limit q ! 0. Using known exponents of the latter mode
we will derive the exponenta from scaling arguments.
We estimatea from simulations and find good agreemen
between the measured and derived values.

The model we consider is a cellular automaton defin
on aN 3 N square latticeL . The sandpile is character-
ized by the number of particles or integer heightszi at all
sitesi and is specified by two rules. (i) Adding a particl
at a random site:zi ! zi 1 1. (ii) Toppling of unstable
sites: if anyzi . 4, thenzj ! zj 2 Dij for all j [ L .

The toppling matrixD is the discrete Laplacian which
has, in the case of a square lattice, nonzero eleme
Dii ­ 4 for all i and Dij ­ 21 for all pairs of adjacent
sitesi and j. It is convenient to introduce an additiona
site i0 connected with all boundary sites to be a sink o
toppled particles.

All stable configurations of heights which are allowe
in the SOC state have the same probability [2]. T
determine if a given configuration is allowed, Majumda
and Dhar [6] have introduced a “toppling from the sink
together with a given order of preference for successi
topplings of sites. Using this procedure, one adds
particle to each site connected withi0. All sites of L

topple exactly once if and only if the configuration i
allowed. Drawing all bonds connecting pairs of site
toppled at successive moments of time, one obtains
spanning tree covering a given lattice. The pointi0 is the
root of the treeT0. The collection of all possible rooted
© 1996 The American Physical Society 2093
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spanning treeshT0j is in one-to-one correspondence wi
the set of allowed configurations.

An avalanche is a perturbation of a stable state.
begins when a particle is dropped on a site of heig
4 and stops when all sites become stable again.
Abelian property admits an arbitrary order of toppling
of nonstable sites during an avalanche. To introdu
the waves of topplings, we carry out the process
relaxation in a specific way [13]. As usual, let us sta
with adding a particle to the sitei of height 4 in an
allowed configurationC. Topple it once and then toppl
all sites that become unstable, keeping the sitei out of the
second toppling. We call the set of toppled sites “the fi
wave of topplings.”

The sitei loses 4 and receivesm particless0 # m # 4d
besides the added one during the first wave. If
resulting heightzi ­ 5, we topple the sitei a second
time and continue the avalanche, not permitting this site
topple a third time. The set of relaxed sites at this sta
is “the second wave.” The process continues produc
intermediate configurationsC1, C2, . . . , Cn until the sitei
becomes stable and the avalanche stops.

All sites involved in the kth wave sk $ 1d topple
only once during this wave. Indeed, to topple a sitej
twice, we have to first topple one of its neighbor sit
j1. The second toppling atj1 is possible only after the
second toppling at its neighborj2, j2 fi j1 and j2 fi j.
Continuing, we obtain the chainj1, j2, . . . , which contains
an initial sitei for the finiteness of the wave. However, b
definition, the sitei topples once during the given wave
therefore other sites of the wave topple once as well.

The construction of waves admits a spanning-tr
interpretation. For this purpose, we introduce the sand
model on an auxiliary latticeL 0, consisting of the original
lattice L , the sitei0, connected with boundary sites o
L and an additional bond connecting the sitei0 and a
given sitei inside the lattice. If we consider the topplin
from the sink for each allowed configuration on the ne
latticeL 0, we obtain, as a result, the set of spanning tre
coveringL 0 and having a rooti0. The trees obtained ar
of two classes. The first one consists of trees withou
bond si0 id and therefore coincides with the set of on
rooted spanning treeshT0j defined above. The trees o
the second class contain the bondsi0 id. On removing the
bond si0 id a subtree of the whole tree gets disconnect
We obtain a two-rooted spanning tree on the origin
latticeL consisting of two componentsT 0

i andT 0
0 having

the roots at the sitesi andi0.
Now, we can select a particle dropped oni among all

particles added to sites connected withi0. This particle
can be considered as a perturbation giving rise to
avalanche onL . Since the sitei on a latticeL 0 is
connected withi0, it topples only once and this avalanch
is actually the wave. The corresponding subtreeT 0

i and
its supplementary componentT 0

0 are the graphic portrait
of an intermediate configuration appearing after a giv
2094
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wave. To construct the subtree corresponding exactly
the first wave, one can start with a configurationC which
is allowed simultaneously on the latticesL andL 0. To
select thekth wave for an arbitraryk, one can first add
k 2 1 particles ati and then apply the toppling from the
sink. An allowed configuration onL appears again after
the last wave.

The graph representation of waves enables us to l
the toppling process with the lattice Green functionG ­
D21, that is, the solution of the Poisson equation with th
boundary conditionsGi0j ­ 0 for all j [ L . In [13] the
following proposition has been proven: For a latticeL
with an additional vertexi0,

Gij ­ N si,jdyN , (1)

whereN si,jd is the number of two-rooted spanning tree
having the rootsi0 andj such that both the verticesi and
j belong to the same subtree;N is the total number of
spanning trees onL .

The wave distribution follows immediately from
Eq. (1) and the known asymptotics of the Green functi
Gsrd , lnr. Indeed, the relative number of wave
N srw $ rijd whose characteristic radiusrw is not less
than the distance betweeni andj is

N srw $ rijd , Gij . (2)

Since the waves are compact, their sizes scale ass , r2.
Then, the asymptotic distribution of sizesDssd is

Dssd , Psrd
dr
ds

,
1
s

, (3)

wherePsrd ­ dGsrdydr , 1yr.
The onefold toppling of all sites in a wave is equivale

to a pass of particles over the boundary of the wa
from sites inside the wave to neighboring sites outsid
Typically, this leads to squeezing the next wave wi
respect to the previous one because a portion of the s
losing particles becomes unable to topple the next tim
So, the subsequent wavesW1, W2, . . . , Wn belonging to
the same avalanche are generally of decreasing s
s1, s2, . . . , sn. An avalanche stops just at the mome
when the boundary of the last wave reaches the init
point i.

Self-similarity of avalanches implies self-similarity o
their components. Therefore, one can expect that the s
difference between successive wavesDs ­ sk 2 sk11

obeys also a power law

Ds , sa . (4)

The exponenta, if it exists, can be related witht by
a scaling relation. Letn denote the number of waves
in an avalanche, which coincides with the number
topplings at the sitei. Equation (4) can be rewritten in
the differential formdsydn , sa or

dn ,
1

sa
ds . (5)
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The wave of sizes belongs to an avalanche of sizeS $

s which has the probabilityPsS $ sd , s12t . Then, the
distribution of waves belonging to diverse avalanches i

Dssd ,
1

sa1t21 . (6)

Comparing (6) with (3), we obtain the scaling relation

a 1 t ­ 2 . (7)

Majumdar and Dhar [6] introduced an exponenty as-
suming thatn scales with the size of an avalanche
n , syy2. To be consistent, the exponentsa andy must
be related as

2a 1 y ­ 2 . (8)

We have studied the statistics of waves numerica
generating106 avalanches on the lattices of sizes up
N ­ 500. In Fig. 1, we have plottedDs vs the wave size
s on a log-log scale, which displays a clear power-la
behavior.

In [14], Grassberger and Manna introduced clust
of sites An which toppled$n times, n $ 1, during an
avalanche. If waves of a given avalanche obey
relationsW1 . W2 . · · · . Wn strictly, the structure of
waves coincides completely with that of clustershAj.
At the same time, Dhar and Manna who investigat
inverse avalanches recorded situations when the waveWk

overlaps the preceding one,Wk21. They argued that thes
events are nevertheless relatively rare, and on the ave
the last waves scale as the clusters of maximal topplin
Our simulations show generally that the distributions
waveshWj and clustershAj follow the same asymptotica
law (4). Taking into account these observations,
neglect the overlapping of waves and deal only with t
decrease of wave sizes.

The above construction allows us to determinea from
scaling arguments. To this end, we have to link t
decrease in the size of wavesDs with the spanning-

FIG. 1. Double logarithmic plot of averaged decrementDs
against cluster sizes for the statistics of106 avalanches on a
square lattice of sizeL ­ 500.
s

ly
o

rs

e

d

ge
s.
f

e
e

e

tree characteristics. Given a rooted treeTi and two sites
j1, j2 [ Ti, we shall say that the sitej1 is a predecessor
of j2 if the unique path connectingj2 and the rooti passes
via j1. It follows from this definition that the sitej2
topples beforej1 during the toppling process.

Let TisWkd be the subtree with a rooti corresponding to
the waveWk. As all sites involved inWk topple exactly
once, all internal sites ofWk remain unchanged. The
waveWk11 following Wk will repeat its order of topplings
until the relaxation process reaches the boundary ofWk .
Accordingly, the subtreeTisWk11d that representsWk11

will coincide with TisWkd as long as its sites have n
predecessors among the boundary sites ofWk . Denote by
Bj a set of sites ofTisWkd having a boundary sitej as a
predecessor. Actually,Bj is a branch ofTisWkd attached
to the subtree at the pointj. If the sitej becomes stable
with respect to the next waveWk11, all sites ofBj become
stable too as the toppling process penetrates intoBj via
the pointj. As a result, the sites ofBj , as well as the site
j itself, contribute toDs. Generally,Ds consists of all
boundary sitesj1, j2, . . . of the waveWk becoming stable
with respect toWk11 and of sites of all setsBj1 , Bj2 , . . .
havingj1, j2, . . . as predecessors.

In Fig. 2, we show a typical form of the set contributin
to Ds. The external contourG represents the boundar
sites of the waveWk , and the loopsgi correspond to
the setsBi . By construction, the two main quantities t
determineDs are the length of the contourG and the area
of loopshgj.

Denoting byR a linear extent of the waveWk , we can
estimate the length of the contourG asR5y4 sinceG is a
chemical pathon the dual spanning tree [15]. Then, th
contribution fromG gives

Ds , R5y4 , s5y8, (9)

FIG. 2. A typical contourG with a set of loopshgj. The loop
g2 is attached toG in pointsx andy separated by a distancel.
The linear extent ofg2 is r.
2095
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which implies 5y8 for the exponenta. We shall see,
however, that the leading contribution comes from th
second quantity determined by the interior of loopshgj.

Consider a single loopg. It is characterized by a
distancel between pointsx and y where it is attached
to the contourG and the linear extentr (see Fig. 2). The
cluster surrounded byg is a subtree having a fixed roo
at one of the two boundary sites, say,x. According to
(3), the trees of linear extentr are distributed asDsrd ,
1yr . The root can occupy any ofr2 positions insideg.
Therefore, subtrees with a fixed root are distributed
1yr3. Let us consider a circleC of radius l having a
center at pointx. The average number of intersection
betweenC andG is of orderl1y4 due to fractal dimensions
of the chemical path. The pointy can occupy any ofl
points of C with equal probability. Thus, we obtain the
asymptotical joint distribution of loopsg

Dgsl, rd ,
l1y4

r3l
. (10)

The maximal extent of bothr andl is of orderR. The
minimal extent ofr is of order l, whereasl is bounded
from below by the lattice spacing. Integrating overr and
l, we obtain the contribution toDs from the single loopg

Dgs ,
Z R

1

Z R

l
r2Dgsl, rddr dl , R1y4. (11)

The number of loops is proportional to the length ofG,
that is,R5y4. Then, the totalDs is

Ds , R3y2 , s3y4. (12)

Comparing (12) with (4) and using (7), we finally ge
a ­ 3y4 andt ­ 5y4.

Our numerical estimation ofa ­ 0.73 extrapolated to
infinite N is quite consistent with the obtained value.

The distribution (10) is based on scaling arguments.
verify its validity, we have used an exact result comin
from the analogy between a Coulomb gas and spann
trees. Saleur and Duplantier [16] evaluated the probabi
that vicinities of two pointsx and y separated by a
distancel are connected by two paths on the tree. Th
found for largel

D2sld ,
1

l3y2
. (13)

To derive (13) from (10), we consider two paths as
loop and compare conditions leading to (10) and (13
The distribution (10) is restricted by the presence of t
external contourG that fixes the position of the initial
2096
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point x. In the latter case, the pointx can occupy any site
of the perimeter proportional tor5y4. The linear extent
r of the loop varies froml to infinity, so the integration
overr gives

D2sld ,
Z `

l
r5y4Dgsl, rddr ,

1
l3y2 (14)

in accordance with (13).
If a is known, other exponents of the sandpile mod

can be readily found. For instance, using the identity [

ts 2 1 ­ 2st 2 1dys2 1 yd , (15)

we find from (7) and (8) the exponent of the total numb
of topplingsts ­ 6y5.

The numerical result by Manna forts ­ 1.2008 [17] is
in excellent agreement with our theoretical prediction.
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