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Formation of Avalanches and Critical Exponents in an Abelian Sandpile Model
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The structure of avalanches in the Abelian sandpile model on a square lattice is analyzed. It is
shown that an avalanche can be considered as a sequence of waves of decreasing sizes. Being more
simple objects, waves admit a representation in terms of spanning trees covering the lattice sites. The
difference in sizes of subsequent waves follows a power law with the expansiniply related to the
basic exponent of the sandpile model. Using known exponents for the spanning trees, we derive from
scaling argumenta = 3/4 and7 = 5/4.

PACS numbers: 64.60.—i, 05.40.4j, 05.60.+w, 46.10.+z

The sandpile model was introduced in the work [1] In this Letter, we use the wave construction for finding
by Bak, Tang, and Wiesenfeld to manifest the nature othe critical exponents of the 2D Abelian sandpile model.
“self-organized criticality” (SOC). The Abelian version We will show that a typical avalanche can be considered
of the model became most popular because it turned oats a sequence of waves of decreasing sizes. Each site
to be analytically tractable [2]. Several characteristiceevolved into a wave topples only once. This permits
of the Abelian sandpile were evaluated exactly: the totalus to define a spanning tree representation for waves
number of allowed configurations in the SOC state [2],and to find their distribution exactly. The difference in
the fractional number of sites having a given height [3,4]sizes of subsequent wavess also follows the power
some height-height correlation functions [3,5], and thelaw As ~ s%, wheres is the size of the wave and the
expected number of topplings at a given site due to @&xponenta is simply related tor. The problem of
particle added at another one [2]. evaluationa can be formulated in terms of spanning trees,

Nevertheless, exact values of exponents characterizingr, equivalently, of theg-component Potts model in the
avalanche processes remained unknown. The distribdimit ¢ — 0. Using known exponents of the latter model,
tion of avalanches obeys the power I&®(S) ~ S~7 in  we will derive the exponen& from scaling arguments.
which S is the number of distinct sites toppled during We estimater from simulations and find good agreement
the relaxation. Exponents corresponding to the mass argktween the measured and derived values.
linear extent of avalanches can be expressed in terms The model we consider is a cellular automaton defined
of 7 [6,7]. Initial simulation studies of sandpiles [1] on aN X N square latticeL . The sandpile is character-
gave r = 1. The first theoretical predictions based onized by the number of particles or integer heightst all
a continuous-energy model [8] and a Flory-like approx-sitesi and is specified by two rules. (i) Adding a particle
imation [9] justified this result. Later on, Manna [10] at a random sitez; — z; + 1. (ii) Toppling of unstable
undertook large-scale simulations and obtained the valusites: if anyz; > 4, thenz; — z; — A;; forall j € L.

7 = 1.22. Meanwhile, the data of the majority of numer-  The toppling matrixA is the discrete Laplacian which
ical experiments were roughly consistent with= 7/6  has, in the case of a square lattice, nonzero elements
[6]. Simple mean-field arguments by Christensen and\; = 4 for all i andA;; = —1 for all pairs of adjacent
Olami [7] led to a somewhat smaller valae= 23/21. sitesi andj. It is convenient to introduce an additional

Recently, Pietronero, Vespignany, and Zapperi [1l1l]site iy connected with all boundary sites to be a sink of
presented a renormalization scheme of a new type thabppled particles.
allowed them to estimate critical exponents of the sandpile All stable configurations of heights which are allowed
model. They obtained = 1.253. in the SOC state have the same probability [2]. To

Determination ofr needs a detailed analysis of the determine if a given configuration is allowed, Majumdar
relaxation process. It would be desirable to represent thand Dhar [6] have introduced a “toppling from the sink”
whole avalanche as a series of more elementary eventsgether with a given order of preference for successive
and to express via auxiliary exponents. The first step topplings of sites. Using this procedure, one adds a
in this direction has been made by Dhar and Manngarticle to each site connected with All sites of £
who introduced the notion of inverse avalanches [12]topple exactly once if and only if the configuration is
It was soon shown that there exists a direct procedurallowed. Drawing all bonds connecting pairs of sites
leading to the same representation of avalanches [13joppled at successive moments of time, one obtains a
New objects, being basic elements of the avalanche, wergpanning tree covering a given lattice. The painis the
termed “waves of topplings.” root of the treeTy. The collection of all possible rooted
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spanning tree$Ty} is in one-to-one correspondence with wave. To construct the subtree corresponding exactly to
the set of allowed configurations. the first wave, one can start with a configurati@mwhich

An avalanche is a perturbation of a stable state. lis allowed simultaneously on the latticés and L/. To
begins when a particle is dropped on a site of heighselect thekth wave for an arbitrark, one can first add
4 and stops when all sites become stable again. The — 1 particles ati and then apply the toppling from the
Abelian property admits an arbitrary order of topplingssink. An allowed configuration oif appears again after
of nonstable sites during an avalanche. To introduc¢he last wave.
the waves of topplings, we carry out the process of The graph representation of waves enables us to link
relaxation in a specific way [13]. As usual, let us startthe toppling process with the lattice Green funct@n=
with adding a particle to the sité of height 4 in an A~!, that is, the solution of the Poisson equation with the
allowed configuratiorC. Topple it once and then topple boundary conditionss;; = O forall j € L. In[13] the
all sites that become unstable, keeping theisaat of the  following proposition has been proven: For a latti€e
second toppling. We call the set of toppled sites “the firstwith an additional vertexy,
wave of topplings.” o))

The sitei loses 4 and receives particles(0 = m = 4) Gij = NN, ()
besides the added one during the first wave. If thevhere N'¢/) is the number of two-rooted spanning trees
resulting heightz; = 5, we topple the site a second having the roots, and; such that both the verticeésand
time and continue the avalanche, not permitting this site tg belong to the same subtre&y is the total number of
topple a third time. The set of relaxed sites at this stagepanning trees off .
is “the second wave.” The process continues producing The wave distribution follows immediately from
intermediate configurations;, C», ..., C, until the site;  Eq. (1) and the known asymptotics of the Green function
becomes stable and the avalanche stops. G(r) ~ Inr. Indeed, the relative number of waves

All sites involved in thekth wave (k = 1) topple N (r,, = r;;) whose characteristic radius, is not less
only once during this wave. Indeed, to topple a site than the distance betweérand; is
twice, we have to first topple one of its neighbor sites
ji. The second toppling ;t? is possible onlygafter the N(ry = rij) ~ Gij. (2)
second toppling at its neighbgs, j,» # j; andj, # j.  Since the waves are compact, their sizes scale -asr?.
Continuing, we obtain the chaif, j», ..., which contains  Then, the asymptotic distribution of siz€Xs) is
an initial sitei for the finiteness of the wave. However, by d 1
definition, the sitei topples once during the given wave, D(s) ~ P(r)— ~ —, 3
therefore other sites of the wave topple once as well. ds §

The construction of waves admits a spanning-tregvhereP(r) = dG(r)/dr ~1/r. _ _
interpretation. For this purpose, we introduce the sandpile The onefold toppling of all sites in a wave is equivalent
model on an auxiliary lattice /, consisting of the original t0 & pass of particles over the boundary of the wave
lattice £, the siteiy, connected with boundary sites of from sites inside the wave to neighboring sites outside.
£ and an additional bond connecting the sigeand a  Typically, this leads to squeezing the next wave with
given sitei inside the lattice. If we consider the toppling réspect to the previous one because a portion of the sites
from the sink for each allowed configuration on the newl0Sing particles becomes unable to topple the next time.
lattice £/, we obtain, as a result, the set of spanning tree$0, the subsequent wavég,, W, ..., W, belonging to
covering L' and having a rooty. The trees obtained are the same avalanche are generally_ of decreasing sizes
of two classes. The first one consists of trees without &1-52.---.s,- An avalanche stops just at the moment
bond (iy i) and therefore coincides with the set of one_Wh_en the boundary of the last wave reaches the initial
rooted spanning tree§} defined above. The trees of Pointi. o S
the second class contain the baigi). On removing the S_elf—5|m|Iar|ty of avalanches implies self-similarity of_
bond (i, i) a subtree of the whole tree gets disconnectedtheir components. Therefore, one can expect that the size
We obtain a two-rooted spanning tree on the originadifference between successive wav&s = si — si+1
lattice £ consisting of two component andT; having  0beys also a power law
the roots at the sitesand . As ~ s2. 4)

Now, we can select a particle dropped bamong all o ] )
particles added to sites connected wigh This particle  The exponenta, if it exists, can be related with by
can be considered as a perturbation giving rise to aR Scaling relation. Lei denote the number of waves
avalanche onf . Since the sitei on a lattice £/ is In an avalanche, which coincides with the number of
connected withiy, it topples only once and this avalanche topplings at the site. Equation (4) can be rewritten in
is actually the wave. The corresponding subtiéeand the differential formds/dn ~ s* or
its supplementary componef are the graphic portrait 1

of an intermediate configuration appearing after a given e 48 )
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The wave of size belongs to an avalanche of sife=  tree characteristics. Given a rooted tf&eand two sites
s which has the probabilit’(S = s) ~ s'~7. Then, the j,, j» € T;, we shall say that the sit§ is a predecessor
distribution of waves belonging to diverse avalanches is of j; if the unique path connecting and the root passes

via j;. It follows from this definition that the sitg,

(6) topples beforg, during the toppling process.

Let T;(W;) be the subtree with a roétcorresponding to
the waveW,. As all sites involved inW, topple exactly
a+7=2. (7)  once, all internal sites of¥; remain unchanged. The

Majumdar and Dhar [6] introduced an exponentas- waveW, i, foIIovying W, will repeat its order of topplings
suming thatn scales with the size of an avalanche asUntl the relaxation process reaches the boundarypf

n ~ s*/2. To be consistent, the exponemtsandy must Accordingly, the subtred’;(W,+,) that representdV;
be related as will coincide with T;(W;) as long as its sites have no

predecessors among the boundary site®of Denote by
2a +y=2. (8) B; a set of sites off;(W;) having a boundary sit¢ as a
We have studied the statistics of waves numericallypredecessor. Actuallys; is a branch off;(W;) attached
generatingl0° avalanches on the lattices of sizes up toto the subtree at the poirit If the site j becomes stable
N = 500. InFig. 1, we have plotted.s vs the wave size With respect to the next wav, ., all sites ofB; become
s on a log-log scale, which displays a clear power-lawstable too as the toppling process penetrates Mtwia
behavior. the pointj. As a result, the sites d;, as well as the site
In [14], Grassberger and Manna introduced clusterg itself, contribute toAs. Generally,As consists of all
of sites A, which toppled=n times,n = 1, during an boundary sitegy, j», ... of the waveW, becoming stable
avalanche. If waves of a given avalanche obey thavith respect toW;.; and of sites of all set®;,B),,...
relationsW, D W, D --- D W, strictly, the structure of havingji, j2,... as predecessors.
waves coincides completely with that of clustels). In Fig. 2, we show a typical form of the set contributing
At the same time, Dhar and Manna who investigatedo As. The external contouf’ represents the boundary
inverse avalanches recorded situations when the wigve Sites of the waveW,, and the loopsy; correspond to
overlaps the preceding on#_;. They argued that these the setsB;. By construction, the two main quantities to
events are nevertheless relatively rare, and on the averagétermineAs are the length of the contoldi and the area
the last waves scale as the clusters of maximal toppling®f loops{y}.
Our simulations show generally that the distributions of Denoting byR a linear extent of the wav#/;, we can
waves{W} and clustergA} follow the same asymptotical estimate the length of the contolirasR¥/* sinceT is a
law (4). Taking into account these observations, wechemical pathon the dual spanning tree [15]. Then, the
neglect the overlapping of waves and deal only with thecontribution fromI" gives
decrease of wave sizes. As ~ RS/4 — §5/8 ©)
The above construction allows us to determinérom ’
scaling arguments. To this end, we have to link the
decrease in the size of wavess with the spanning-

D(s) ~

gatT—1 .
Comparing (6) with (3), we obtain the scaling relation

5.0 X Yz

T

Log(As)

1.0 Log(s) 6.0 74 'YS
FIG. 1. Double logarithmic plot of averaged decremevst FIG. 2. A typical contoud” with a set of loopgy}. The loop

against cluster size for the statistics ofl0° avalanches on a 1y, is attached td" in pointsx andy separated by a distanée
square lattice of sizé = 500. The linear extent ofy, is r.
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which implies 5/8 for the exponentz. We shall see,

pointx. In the latter case, the pointcan occupy any site

however, that the leading contribution comes from theof the perimeter proportional to’/4. The linear extent

second quantity determined by the interior of lodp$.
Consider a single loopy. It is characterized by a
distancel between pointsc and y where it is attached
to the contoud” and the linear extent (see Fig. 2). The
cluster surrounded by is a subtree having a fixed root

r of the loop varies from to infinity, so the integration
overr gives

* 1
Dy(I) ~ ]Z rDy (L r)dr ~ 25 (14)

at one of the two boundary sites, say, According to in accordance with (13).

(3), the trees of linear extemtare distributed a®(r) ~ If « is known, other exponents of the sandpile model

1/r. The root can occupy any of positions insidey.  can be readily found. For instance, using the identity [6]

Therefore, subtrees with a fixed root are distributed as .

1/r3. Let us consider a circl& of radius/ having a 7= 1 =207 = D/2+y), (15)

center at pointt. The average number of intersectionswe find from (7) and (8) the exponent of the total number

betweenC andT is of order/!/* due to fractal dimensions of topplingsr, = 6/5.

of the chemical path. The point can occupy any of The numerical result by Manna fat, = 1.2008 [17] is

points of C with equal probability. Thus, we obtain the in excellent agreement with our theoretical prediction.

asymptotical joint distribution of loopsg This work was supported by the Russian Foundation for
1/4 Basic Research through Grant No. 95-01-0257. E.V.I.

D,(l,r) ~ (10)

r3l
The maximal extent of both and! is of orderR. The
minimal extent ofr is of orderi, whereas is bounded
from below by the lattice spacing. Integrating oveand
[, we obtain the contribution tds from the single loopy

R R
Ays ~ [ f r2D7(l, r)dr dl ~ R'*.
1 Ji

The number of loops is proportional to the lengthlgf
that is,R3/4. Then, the totalAs is

As ~ R¥? ~ §3/4,

(11)

(12)

Comparing (12) with (4) and using (7), we finally get
a =3/4andr = 5/4.

Our numerical estimation o = 0.73 extrapolated to
infinite N is quite consistent with the obtained value.
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