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Suppression of Chaos in a Simplified Nonlinear Dynamo Model
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A simplified nonlinear dynamo model is constructed that allows the transition from the kinematic
to the dynamic regime to be studied in detail. We apply this construction to a chaotic flow recentl
studied in the context of fast dynamo action. It is found that the structure of the magnetic field i
the two regimes is markedly different. Furthermore, the saturation of the exponential growth of th
magnetic field is achieved by a drastic suppression of the chaotic properties of the flow.
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The fast dynamo problem, concerned with the gene
tion of magnetic fields in highly conducting fluids, has
late received considerable attention [1]. Its simplest f
mulation relies on the kinematic assumption, in which
velocity is prescribed and the magnetic field evolves
to the induction equation. In this framework one attem
to identify those properties of the velocity that lead to fie
amplification in the limit of vanishing magnetic diffusiv
ity (infinite magnetic Reynolds number).

The kinematic approach is valid when the magne
field is weak, and indeed is a natural starting point for
problem. However, in reality, the exponential growth
the magnetic field cannot continue indefinitely; eventua
the backreaction of the magnetic field (via the Lore
force) will modify the flow, thus causing the growth
saturate. Exactly how this modification occurs is at
heart of the nonlinear dynamo problem, though at pres
it is not clearly understood. Furthermore, the chao
properties of the resulting velocity fields in this regim
where the magnetic field (on average) neither grows
decays, have only recently been studied [2].

It is recognized that the essence of the kinematic pr
lem is the competition between line stretching leading
field amplification and enhanced diffusion leading to
destruction of magnetic flux [3]. It is natural to rega
both effects from the Lagrangian standpoint of consid
ing particle trajectories. Indeed, it is known that a n
essary (though not sufficient) condition for fast dyna
action is that the flows possess regions of chaotic tra
tories, in which the process of line stretching is expon
tial [4]. However, for such flows, gradients also increa
exponentially and therefore the success or failure of
dynamo depends on the relative importance of these
processes. It is thus important to understand the na
of these two processes in the saturated regime. It is c
that they must balance; this, however, can be achieve
a number of different ways. At one extreme, the stret
ing of the field remains vigorous and the dissipation is
hanced; at the other, both the stretching and the dissipa
become small. These two possibilities describe very
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ferent physical situations; in the former, the flow remain
chaotic and the dynamo process is strongly dissipative;
the latter, the flow is only weakly chaotic and weakly dis
sipative. It is likely that the transport properties of thes
two types of flow are very different.

There are various approaches to gain insight into t
behavior of nonlinear dynamos. One possibility is t
solve the equations of nonlinear magnetohydrodynam
(MHD) [5]. In this case the velocity is no longer pre
scribed, but occurs as a solution of the Navier-Stok
equation including the Lorentz force. The dynamical sta
in which the dynamo saturates then emerges naturally a
self-consistent solution of the full equations. Clearly th
approach contains all the relevant physics. However, d
to the inherently three-dimensional nature of the dynam
problem, a fully nonlinear treatment becomes extreme
computationally expensive, even for moderate magne
Reynolds numbers. Furthermore, in a fully nonlinea
formulation, one is allowed only thea priori specification
of the forcing function; it is therefore difficult to make
contact with the results of kinematic theory, which i
based on a description of the velocity. One of th
problems is that in most cases the velocities conside
by kinematic models become unstable for modest valu
of the Reynolds number even in the absence of magne
effects. In other words, it is often hydrodynamicall
difficult to “force” the fluid to flow in the kinematically
required manner.

An alternative approach, which we shall pursue her
is to concentrate on the velocity field, at the expense
sacrificing some of the physics. One of the motivatin
factors for our approach is that the (purely hydrodynam
cal) instabilities alluded to above are related to the inert
term in the momentum equation. If the latter is neglecte
the momentum equation becomes linear in velocity whi
can then be divided into two ingredients, one that is pr
scribed (as in kinematic theory) and the other driven sole
from the action of the Lorentz force. The first can be ch
sen to lead to the exponential growth of the magnetic fie
while the second brings about its saturation. The combin
© 1996 The American Physical Society 2057
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velocity field has the interesting property of describing
stationary dynamo.

The governing equations of MHD in dimensionle
units are [6]

s≠t 2 R21
m =2dB ­ === 3 su 3 Bd , (1)

s≠t 2 R21
e =2du 1 u ? =u ­ 2===p 1 J 3 B 1 F ,

(2)

whereu, B, and p are the velocity, magnetic field, an
pressure, respectively;J ­ === 3 B is the electric current
andF a forcing function. The dimensionless quantitiesRe

and Rm are the kinetic and magnetic Reynolds numbe
By definition=== ? B ­ 0 and we assume that=== ? u ­ 0.

If we neglect the inertia term in the momentum equat
and write

u ­ uo 1 ui , (3)

then (2) can be separated into

s≠t 2 R21
e =2duo ­ 2===po 1 F , (4)

s≠t 2 R21
e =2dui ­ 2===pi 1 J 3 B . (5)

Formally, the velocityuo is defined in terms of the forc
ing function F; however, for our purposes it is more in
structive to regard it as prescribed. The induced velo
ui is determined by the backreaction due to the Lore
force. The idea is to chooseuo to have known interesting
properties from kinematic dynamo theory and to evo
(1), (4), and (5) to get a modified velocityuo 1 ui that
incorporates aspects of both the kinematic and dynam
regimes. The decompositionu into a driving and an in-
duced component can be rigorously justified only ifRe ø
1. Nonetheless, even when this inequality is not stric
valid, we believe that the construction above will provi
useful insights into the nonlinear dynamo problem.
deed, a similar approach has been used successful
studies of nonlinear magnetoconvection [7]. Clearly, ho
ever, the present model will be inappropiate in cases wh
the saturation mechanism depends crucially on a (forw
or backward) cascade of kinetic energy.

We now apply the procedure above to the flow

uo ­ s≠yc , 2≠xc , cd , (6)

c ­
q

3y2 fsinsx 1 costd 1 coss y 1 sintdg . (7)

This flow has large regions of chaotic streamlines and
kinematic fast dynamo properties have been extensiv
studied [8,9]. Since this velocity isz independent, we can
seek monochromatic solutions of the form

Bsx, td ­ B̂sx, y, td expsikzd . (8)

With such a magnetic field, the velocity induced by t
Lorentz force will not bez independent; indeed the prob
lem quickly becomes fully three dimensional. Thus, in o
der to retain the simplifying assumptions of the kinema
theory into the dynamical regime we make the further
2058
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sumption thatui is also independent ofz. In practice, this
can be achieved by retaining only thez-averaged com-
ponent of the Lorentz force. Under this assumption t
velocity ui is then determined by

s≠t 2 R21
e =2dui ­ 2===pi 1 kJ 3 Blz , === ? ui ­ 0 .

(9)

This is a good time to remark on the nature of the drivi
and induced velocitiesuo and ui. One possibility that
would lead to saturation is thatuo ø 2ui, i.e., the effect
of the Lorentz force is simply to reduce the amplitude
the overall flow. However, for largeRm this is unlikely
to be the case. Assuming thatuo is a large scale flow of
characteristic size, then the resulting magnetic field wil
have fluctuations down to (small) scales of orderR21y2

m ,;
consequently, the resulting induced flowui will likewise
have small scale components. Recent work has shown
often it is this small scale component that is responsi
for the dynamical saturation of the dynamo process [1
For this reason, although the truncation inz is severe (a
single mode), we solve Eq. (9) with high resolution in th
x-y plane.

We have followed the evolution of this system nume
cally, starting with a weak magnetic field; for the resul
displayed hereRe ­ Rmy4 andk ­ 0.57 [8,11]. Initially
the system is in the kinematic phase;ui is negligible com-
pared touo and, after a few turnover times, the magne
field develops a well-defined eigenfunction with an amp
tude that grows exponentially [8]. The kinematic pha
ends when the peak magnetic field becomes compar
with the velocity. By now the induced velocityui is, at
least somewhere, of the same magnitude as the driv
flow uo. There follows a period of readjustment chara
terized by an increase in the scale of magnetic dissi
tion defined by

p
kB2lykJ2l. Eventually the system settle

down to a time-dependent stationary state, in which,
average, the field neither grows nor decays.

The exponential growth and eventual saturation c
clearly be identified in Fig. 1, which shows the tempor
evolution of the magnetic energykB2y2l. The stationary
state value is comparable to the kinetic energy dens
(equipartition). The transition phase from the kinematic
the dynamical regime is best seen in Fig. 2, which sho
the dissipation scale for the magnetic field for three valu
of Rm. In the kinematic phase (up tot ø 30 in all three
cases) the dissipation scale is roughly constant. The in
rapid decrease, barely visible on this scale, results fr
the initial conditions. The saturation phase starts with
abrupt increase in scale, followed by a further period
readjustment, before reaching the final stationary state.
both the kinematic and dynamical regimes the dissipat
scale decreases with increasingRm.

It is natural to enquire into the relation between the ma
netic field in the kinematic and final stationary states. O
possibility is that by and large the structure of the fie
remains the same, except possibly for an increase in
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FIG. 1. Temporal evolution of the magnetic energy;Rm ­
100. The upper curve is logarithmic (corresponding to t
left-hand axis), the lower curve is linear (corresponding to
right-hand axis). The kinematic phase, during which the fie
grows exponentially and the backreaction is negligible, end
t ø 30. The saturation phase extends fromt ø 30 to t ø 250,
after which the dynamo is in its final stationary state.

dissipation scale (see Fig. 2). In this case the satura
process merely limits the amplitude of the magnetic eig
function, but with no significant restructuring of the ma
netic field. The other possibility is that in the saturatio
process nonlinear interactions lead to a substantial cha
in the velocity with a corresponding restructuring of th
magnetic field. In this case the final magnetic field be
little resemblance to the field in the kinematic regime. T
evidence from our computation shows that the second p
sibility is in fact the correct one. This point is illustrate
at
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FIG. 2. Temporal evolution of the magnetic dissipation leng
scale for three different values ofRm.

in Fig. 3 which shows the current distribution in the kin
matic and dynamical regimes at three corresponding tim
during a cycle of the velocityuo. It is clear that the struc-
ture of the magnetic field as well as the relation betwe
the field and the driving velocity are dramatically differe
in the two regimes.

The saturation process must necessarily also involv
modification of the velocity so that in the final stationa
state some balance is reached between the rates of
generation and dissipation. The changes, however,
subtle and not such that they can be illustrated by mer
looking at the (Eulerian) structure of the velocity field (fo
example, its rms velocity remains roughly the same). T
nature of the changes becomes apparent only by exami
en
led
FIG. 3. Plots ofJ ? ẑ for the kinematic and dynamical regimes on the planez ­ 0 (Rm ­ 100). The dark lines are contours
of c, corresponding to projections of the streamlines ofu0 onto anyx-y plane. They are included to show the relation betwe
the magnetic structure and the driving velocity at three corresponding phases ofu0. The upper and lower sets have been sca
independently.
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FIG. 4. Spatial distribution of finite-time Lyapunov expo
nents, starting from the indicated times. The shades code
values of the exponents as a function of the initial position
Light tones correspond to trajectories with little or no (expo
nential) stretching; dark tones correspond to strongly stretch
trajectories. Regions of chaotic motion, which occupy a su
stantial fraction of the domain in the kinematic regime, a
almost completely absent in the later dynamical phases.

the Lagrangian properties of the flow. We have thus co
puted the finite-time Lyapunov exponents [12] for the t
tal velocityu ­ uo 1 ui in the kinematic and dynamica
regimes (Fig. 4). This was achieved by following fo
25 time units1282 trajectories initially distributed uni-
formly over thez ­ 0 plane and determining the averag
(exponential) stretching rate along each trajectory. In t
kinematic regime there are large regions of chaotic traje
tories along which fluid elements and therefore magne
field lines are stretched exponentially; in the dynamic
regime chaotic regions are almost completely absent.

The foregoing analysis provides a valuable insight in
the nature of the dynamo saturation process. Equilibrat
is brought about by a suppression of the chaotic stretch
of the field and a corresponding reduction in the rat
of magnetic field dissipation. This should be contrast
with the alternative scenario in which stretching remai
vigorous but there is a corresponding increase in t
efficiency of the dissipation [2]. Finally, these resul
illustrate the intrinsic limitations of kinematic theory. In
order to understand magnetic fields in realistic physic
situations it is necessary not only to understand th
growth but also the processes by which they stop growin
since it is these that eventually determine the structure
the observed magnetic fields.
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