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Suppression of Chaos in a Simplified Nonlinear Dynamo Model
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A simplified nonlinear dynamo model is constructed that allows the transition from the kinematic
to the dynamic regime to be studied in detail. We apply this construction to a chaotic flow recently
studied in the context of fast dynamo action. It is found that the structure of the magnetic field in
the two regimes is markedly different. Furthermore, the saturation of the exponential growth of the
magnetic field is achieved by a drastic suppression of the chaotic properties of the flow.

PACS numbers: 47.65.+a, 05.45.+b, 47.52.+j, 52.30.—q

The fast dynamo problem, concerned with the generaferent physical situations; in the former, the flow remains
tion of magnetic fields in highly conducting fluids, has of chaotic and the dynamo process is strongly dissipative; in
late received considerable attention [1]. Its simplest forthe latter, the flow is only weakly chaotic and weakly dis-
mulation relies on the kinematic assumption, in which thesipative. It is likely that the transport properties of these
velocity is prescribed and the magnetic field evolves dugwo types of flow are very different.
to the induction equation. In this framework one attempts There are various approaches to gain insight into the
to identify those properties of the velocity that lead to fieldbehavior of nonlinear dynamos. One possibility is to
amplification in the limit of vanishing magnetic diffusiv- solve the equations of nonlinear magnetohydrodynamics
ity (infinite magnetic Reynolds number). (MHD) [5]. In this case the velocity is no longer pre-

The kinematic approach is valid when the magneticscribed, but occurs as a solution of the Navier-Stokes
field is weak, and indeed is a natural starting point for theequation including the Lorentz force. The dynamical state
problem. However, in reality, the exponential growth of in which the dynamo saturates then emerges naturally as a
the magnetic field cannot continue indefinitely; eventuallyself-consistent solution of the full equations. Clearly this
the backreaction of the magnetic field (via the Lorentzapproach contains all the relevant physics. However, due
force) will modify the flow, thus causing the growth to to the inherently three-dimensional nature of the dynamo
saturate. Exactly how this modification occurs is at theproblem, a fully nonlinear treatment becomes extremely
heart of the nonlinear dynamo problem, though at preserdomputationally expensive, even for moderate magnetic
it is not clearly understood. Furthermore, the chaoticReynolds numbers. Furthermore, in a fully nonlinear
properties of the resulting velocity fields in this regime,formulation, one is allowed only the priori specification
where the magnetic field (on average) neither grows noof the forcing function; it is therefore difficult to make
decays, have only recently been studied [2]. contact with the results of kinematic theory, which is

It is recognized that the essence of the kinematic probbased on a description of the velocity. One of the
lem is the competition between line stretching leading tgoroblems is that in most cases the velocities considered
field amplification and enhanced diffusion leading to theby kinematic models become unstable for modest values
destruction of magnetic flux [3]. It is natural to regard of the Reynolds number even in the absence of magnetic
both effects from the Lagrangian standpoint of considereffects. In other words, it is often hydrodynamically
ing particle trajectories. Indeed, it is known that a necdifficult to “force” the fluid to flow in the kinematically
essary (though not sufficient) condition for fast dynamorequired manner.
action is that the flows possess regions of chaotic trajec- An alternative approach, which we shall pursue here,
tories, in which the process of line stretching is exponenis to concentrate on the velocity field, at the expense of
tial [4]. However, for such flows, gradients also increasesacrificing some of the physics. One of the motivating
exponentially and therefore the success or failure of théactors for our approach is that the (purely hydrodynami-
dynamo depends on the relative importance of these twoal) instabilities alluded to above are related to the inertial
processes. It is thus important to understand the naturterm in the momentum equation. If the latter is neglected,
of these two processes in the saturated regime. It is cledhe momentum equation becomes linear in velocity which
that they must balance; this, however, can be achieved ican then be divided into two ingredients, one that is pre-
a number of different ways. At one extreme, the stretchscribed (as in kinematic theory) and the other driven solely
ing of the field remains vigorous and the dissipation is enfrom the action of the Lorentz force. The first can be cho-
hanced; at the other, both the stretching and the dissipatiasen to lead to the exponential growth of the magnetic field
become small. These two possibilities describe very difwhile the second brings about its saturation. The combined
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velocity field has the interesting property of describing asumption thau; is also independent af In practice, this

stationary dynamo. can be achieved by retaining only theaveraged com-
The governing equations of MHD in dimensionlessponent of the Lorentz force. Under this assumption the
units are [6] velocity u; is then determined by
(3, — R,,'V)B =V X (u X B), 1 (@, —R'VHu; = -Vp; + JXB),, V-u=0.
9
(0, —R;'V)u +u-Vu=-Vp+JXB+F, o . (?_
) This is a good time to remark on the nature of the driving
_ o and induced velocitiem, andu;. One possibility that
whereu, B, and p are the velocity, magnetic field, and would lead to saturation is that, =~ —u;, i.e., the effect

pressure, respectively; = V X B is the electric current of the Lorentz force is simply to reduce the amplitude of
andF a forcing function. The dimensionless quantitis  the overall flow. However, for larg&,, this is unlikely
andR,, are the kinetic and magnetic Reynolds numbersto be the case. Assuming thaj is a large scale flow of

By definitionV - B = 0 and we assume th& - uw = 0.  characteristic sizé then the resulting magnetic field will
If we neglect the inertia term in the momentum equationave fluctuations down to (small) scales of orégr'/2¢;
and write consequently, the resulting induced flaw will likewise

3) have small scale components. Recent work has shown that

u=u, +u;, L . ; ;
’ l often it is this small scale component that is responsible

then (2) can be separated into for the dynamical saturation of the dynamo process [10].
(9, — R;'VYu, = —Vp, + F, (4)  For this reason, although the truncationzins severe (a
single mode), we solve Eq. (9) with high resolution in the
(0, — R,'V)u; = =Vp, + J X B. (5)  x-y plane.

Formally, the velocityu, is defined in terms of the forc- We have followed the evolution of this system numeri-

ing function F; however, for our purposes it is more in- cally, starting with a weak magnetic field; for the results

structive to regard it as prescribed. The induced veIocitfiSpl"leecl her®, = R,,/4 andk = 0.57[8,11]. Initially

u; is determined by the backreaction due to the Lorent he system is in the kinematic phaa;e;ls_ negligible com- .
pared tou, and, after a few turnover times, the magnetic

force. The idea is to choosg, to have known interesting =~ ! . ) . .
properties from kinematic dynamo theory and to evolveﬁGIOI develops awell-defm(_ed elgenfunctlon with an ampli-
(1), (4), and (5) to get a modified velocity, + u, that tude that grows exponentially [8]. The kinematic phase

incorporates aspects of both the kinematic and dynamic%\/ri't(:]str\:\:a hsglgc]:?[ pegk ?:V%r;ﬁgci;flﬁe%esgrggf §(i)srn|r;?rable
regimes. The decompositian into a driving and an in- least h Y ¥th itud ulth ’ drivi
duced component can be rigorously justified onlR if < east somewnere, ol the same magnitude as the driving

1. Nonetheless, even when this inequality is not strictly{IOW u,. There follows a period of readjustment charac-

. : ; . . ized by an increase in the scale of magnetic dissipa-
valid, we believe that the construction above will provide erized e
useful insights into the nonlinear dynamo problem. In-t'on defined by/(B*)/(J%). Eventually the system settles

deed, a similar approach has been used successfully ﬂpwn o a tme—depgndent stationary state, in which, on
average, the field neither grows nor decays.

studies of nonlinear magnetoconvection [7]. Clearly, how- . .
The exponential growth and eventual saturation can

ever, the present model will be inappropiate in cases wher ; P )
the saturation mechanism depends crucially on a (forwar8elearly be identified in Fig. 1, which shows the temporal

or backward) cascade of kinetic energy. evolution of the magnetic energB?/2). The stationary

We now apply the procedure above to the flow state value is comparable to the kinetic energy density
(equipartition). The transition phase from the kinematic to

u, = 0y, =09, ¢), (6)  the dynamical regime is best seen in Fig. 2, which shows
. . the dissipation scale for the magnetic field for three values
¥ = @[sm(x + cog) + cody +sim)]. (7)ot g in the kinematic phase (up to=~ 30 in all three
This flow has large regions of chaotic streamlines and itsases) the dissipation scale is roughly constant. The initial
kinematic fast dynamo properties have been extensivelsapid decrease, barely visible on this scale, results from
studied [8,9]. Since this velocity isindependent, we can the initial conditions. The saturation phase starts with an
seek monochromatic solutions of the form abrupt increase in scale, followed by a further period of
B . readjustment, before reaching the final stationary state. In
B(x,7) = B(x,y, 1) explikz). (8) both the kinematic and dynamical regimes the dissipation
With such a magnetic field, the velocity induced by thescale decreases with increasiRg.
Lorentz force will not bez independent; indeed the prob-  Itis natural to enquire into the relation between the mag-
lem quickly becomes fully three dimensional. Thus, in or-netic field in the kinematic and final stationary states. One
der to retain the simplifying assumptions of the kinematicpossibility is that by and large the structure of the field
theory into the dynamical regime we make the further asremains the same, except possibly for an increase in the
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FIG. 1. Temporal evolution of the magnetic energy;, = FIG. 2. Temporal evolution of the magnetic dissipation length

100. The upper curve is logarithmic (corresponding to thescale for three different values &f,.
left-hand axis), the lower curve is linear (corresponding to the

right-hand axis). The kinematic phase, during which the field. = . : ST ;
g?ows exponen)tially and the baclfreaction is n%gligible, ends af’ F!g. 3 which sh_ows th? current distribution in th.e klne—
1 ~ 30. The saturation phase extends frone 30 to r ~ 250, ~ matic and dynamical regimes at three corresponding times
after which the dynamo is in its final stationary state. during a cycle of the velocity,. Itis clear that the struc-
ture of the magnetic field as well as the relation between
dissipation scale (see Fig. 2). In this case the saturatiotihe field and the driving velocity are dramatically different
process merely limits the amplitude of the magnetic eigenin the two regimes.
function, but with no significant restructuring of the mag- The saturation process must necessarily also involve a
netic field. The other possibility is that in the saturationmodification of the velocity so that in the final stationary
process nonlinear interactions lead to a substantial changtate some balance is reached between the rates of field
in the velocity with a corresponding restructuring of thegeneration and dissipation. The changes, however, are
magnetic field. In this case the final magnetic field bearsubtle and not such that they can be illustrated by merely
little resemblance to the field in the kinematic regime. Thdooking at the (Eulerian) structure of the velocity field (for
evidence from our computation shows that the second pogxample, its rms velocity remains roughly the same). The
sibility is in fact the correct one. This point is illustrated nature of the changes becomes apparent only by examining

Kinemaltic regime

FIG. 3. Plots ofJ - Z for the kinematic and dynamical regimes on the plane 0 (R, = 100). The dark lines are contours
of ¢, corresponding to projections of the streamlineaigfonto anyx-y plane. They are included to show the relation between
the magnetic structure and the driving velocity at three corresponding phasgs dfthe upper and lower sets have been scaled
independently.
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