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Complete second-order calculations of the two-electron contribution to the ground-state energy of
heliumlike ions are presented and compared with recent experimental results. Calculations involve
relativistic many-body effects and two-electron Lamb-shift (vacuum-polarization and self-energy)
contributions as well as the recently presented nonradiative QED corrections. Agreement between
experimental and theoretical results verifies the many-body part of the calculation. The accuracy of
the results is not high enough to test the QED part of the calculations, but an improvement by half an
order of magnitude would provide an experimental test of the QED effect for heavy ions beyond the
first-order Lamb shift.

PACS numbers: 31.10.+z, 31.15.Ar, 31.30.Jv

The experimental situation concerning heavy-ion spec- The many-body contribution to the Lamb shift can to
troscopy has improved drastically in recent yearsfirst approximation be regarded assareeningof the
Electron-beam ion trap (EBIT) and super-EBIT facilities single-electron Lamb shift. This screening can be esti-
together with storage rings with improved cooling facili- mated by means of a modification of the nuclear potential
ties have made it possible to study highly charged ion$4,9,11]. In this way, however, it is not possible to treat
with increasing precision. Also on the theoretical sidethe exchange effect and the effect due to transverse pho-
corresponding progress has taken place. tons in an exact way. In order to reach high accuracy it

Using the super-EBIT facility at Lawrence Livermore is of importance to perform many-body Lamb-shift calcu-
National Laboratory, Marrs, Schneider, and Stéhlker [1]lations without any approximations. We have for the first
have recently measured the two-electron contribution téime performed such calculations, complete to second or-
the ground-state energy of some heavy heliumlike ions bger, and the results will be presented here.
comparing the ionization energy of heliumlike and hydro- The two-photon contributions to the electron-electron
genlike ions of the same elements. Data of this kind arénteraction for two-electron systems are represented by
particularly interesting for testing calculations of the tiny the Feynman diagrams in Fig. 1. The first line repre-
two-electron QED contribution, since the dominating one-sents the fionradiativé diagrams, the ladder’ (a) and
body parts are completely eliminated. We shall presenthe “crossed-photoh(b) diagrams. The ladder diagram
here such calculations and compare them with the expercontains the leading many-body (second-order) contribu-
mental results of Marrs, Schneider, and Stohlker. tion. The remaining part of that diagram together with the

QED corrections to the energy of heliumlike ions, cor-cross diagram represents the nonradiative QED effects first
rect to order(a)’mc* where « is the fine-structure con- calculated for light elements by Araki and Sucher in the
stant, were derived long ago by Araki and Sucher [2].1950s [2], and more recently by the Géteborg and Notre
Considering the two-photon two-electron contribution onlyDame groups for general nuclear charges [8,10]. The sec-
the leading terms in th& @ expansion are included in ond line in Figs. 1(c) and 1(d) represents the two-electron
their expressions. These terms are correct at the levebcuum polarization and the last line [1(e) and 1(f)] the
(a)’(Za)*mc?. However, for heavy highly charged ions two-electron—orscreened—self-energy. We shall here
whereZ « approaches unity, théa expansionis nolonger be concerned with the calculation of the two-electron Lamb
meaningful. Here, it is necessary to take into accounshift [diagrams 1(c)—1(f)].
the nuclear potential interaction to all orders by means of The vacuum-polarization and self-energy calculations
numerical techniques. The starting point is then singlehave been performed along the same line as in our recently
electron states generated in the nuclear field, rather thgsublished works [4—7]. In this Letter we use units where
free-electron states. This technique was first applied ol = €9 = ¢ = ¢ = 1. The single-electron states are gen-
self-energy calculations on hydrogenlike heavy ions [3].erated in the field of the nucleus by solving the Dirac equa-
We have recently developed a numerical technique fotion with the nuclear potential(r),
heavy ions with more than one electron and applied this to ext| s\ N .
self-energy and vacuum-polarization calculations [4—7] as Wiy = [a - p + Bm + u(r)]li) = eili).
well as to calculations of the nonradiative QED effect [8]. This equation is solved by the method of discretization
Related calculations have also been performed by othdgfi2]. Finite nuclei are used with the experimentally de-
groups using different numerical techniques [9,10]. termined radius and a uniform charge distribution.
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FIG. 1. Feynman diagrams representing the two-photon con- X f dt e
tribution to the electron-electron interaction for heliumlike 1 w? — k2 — 412 + je

ions. The first row, the “ladder” (a) and the “crossed-photon” ) 1
(b) diagrams, represent the nonradiative part, and the remaining X A/12 — 1<_ + _>
diagrams represent the two-electron Lamb shift, i.e., vacuum 312 34
polarization (c) and (d) and self-energy (e) and (f), respectively.
The remaining part of the diagram is evaluated in analogy
with the Wichmann-Kroll part of the vacuum polarization
We are primarily interested here in the Lamb-shiftby taking the difference between the bound state and the
contributions for the ground state of the two-electronfree-electron polarization operators in the photon line [5].
system, and in evaluating the energy contributions we The self-energy contributions [1(e) and 1(f)] are quite
shall therefore assume that all external orbital lines havsimilar to the corresponding contributions to the hyperfine
the same energy,, = €, = €. = €. interaction, recently calculated by Perssen al.[13].
Diagram 1(c) can be generated by perturbing the singlefhese contributions can be obtained by perturbing the
photon exchangéed|Vi»|ab), by the vacuum—polarizatiow (unrenormalized) first-order self-energy,

(c|X'(ec) la) gl §(2l + 1)] d_zj k> dk (claf as, C'(1) - C'2)ji(kr1)jji(kr2) la)
T = 27 [
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__a g (cla”Cji(kr) lu) - (ula,C'ji(kr) |a)
-2 ;)(21+1)[kdkzu: P — , 1)

by the interaction with the other electron [¢gp) = *1 | modification of the outgoing orbital line. The corre-
depending on the sign of,]. Perturbing the incoming sponding modifications have to be made also in the mass
external orbital linda) leads to counter term, used in renormalizing the first-order self-
(|3 (e) |1) (td|V1nlab) energy. This leads to an analogous expression, and the
AE, = Z 5
t

(2) renormalization of Eq. (2) is then obtained simply by in-
serting the renormalized self-energy operator.

with €, # €.. This represents the contribution due to dia- Perturbing the electron propagator by the interaction

gram 1(e), apart from the casge = €., which will be leads to a modification of the Hamiltonian and the orbital

considered later. There is a similar contribution for theenergye. in the denominator of Eq. (1). The modification

of the Hamiltonian leads to

€ — €&
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where
k

c € t €, — €

F =1+ [sgn(e,) — sgne;)] .

This represents the contribution due to diagram 1(f).
The modification of the orbital energy leads to

ABus = (edlVclab) (el | =3 )| o

w=¢€,

a < (cd|Vislab){cla”C' ji(kr) |u) - (ula,C'ji(kr)|a)
= — + .
Yoy [ray e — e — ksgren)] @
This is the finite contribution to diagram 1(e) when= | pare with recent experimental results of Marrs, Schneider,

e.. If the interaction is energy dependent, there is arand Stohlker [1]. The all-order relativistic many-body re-
additional term. This is not the case for the ground statesult (RMBPT) is also calculated and the nonradiative QED
considered here. There is no contribution from the massontribution is taken from our recent publication [8]. In
counter term to the last two expressions. Table Il we compare the results of several recent theoreti-
The two expressions in Egs. (3) and (4) are both infraredal estimates of the two-electron energy contribution.
and ultraviolet divergent, but the divergences cancel when The results of Drake [16] are obtained by means of ac-
the two contributions are added. This cancellation iscurately correlated nonrelativistic wave functions and the
related to the Ward identity. The explicit cancellation QED corrections are calculated using expressions, correct
of the ultraviolet divergencies are handled by the use ofo order«?, derived by Araki and Sucher [2]. The re-
dimensional regularization [14]. The infrared divergencysults of Plante, Johnson, and Sapirstein [17] are relativis-
can explicitly be canceled by separating out for= 0  tic many-body calculations, corrected for the Lamb shift
the contributione. = ¢, in Eq. (4) and the contribution using Drake’'s QED data [16]. The results of Indelicato,
e. = e, = e, = ¢;in Eq. (3). Gorceix, and Desclaux [18] are obtained by multiconfigu-
The second-order contributions considered here can algation Dirac-Fock calculations, using the “Welton” method
be derived in a more formal way, using tifematrix  [18] to approximate the Lamb shift.
formalism and the Gell-Mann-Low-Sucher formula [15],  The agreement between the various theoretical results is
. enerally quite good, which indicates that the earlier es-
AE = in[2(s¥) = (9], ) gmates }(l)fqthe Lgamb—shift contributions have been quite
in the limit where the adiabatic parametetends to zero. accurate. Drake’s result suffers from the inaccuracy of
Here, the second term, representing products of discorthe Za expansion for the QED and relativistic effects for
nected first-order diagrams, is singular and cancels the coheavy elements, which becomes particularly evident for Bi
responding singularity of the reference-state contributiofZ = 83). Onthe other hand, Drake uses correlated hydro-
(reducible part) of diagram 1(e). The remaining finite con-genic wave functions and thus includes also higher-order
tribution from the reference state leads to the derivativéCoulomb correlation in the QED effects. The relative ef-
term Eq. (4). fect of correlation is largest for light elements, where the
In Table | we present the vacuum-polarization andabsolute effect is smaller. Therefore, the missing correla-
self-energy results for some heliumlike ions with nucleartion effect in our QED values is estimated to be at most
charges ranging from 32 to 92. The results are separatenf the order of 0.1 eV for all elements. The very weak
into Coulomb and Breit parts for the photon connectingdependence of the nuclear structure on the results was
the two electrons. In Table Il we collect the various con-investigated by calculating the first-order energy varying
tributions to the two-electron part of the energy and com+the nuclear parameters and using Fermi—and uniform—

TABLE I. Two-electron vacuum-polarization and self-energy contributions to the ground-
state energy of some heliumlike ions (in eV).

Nuclear Ry Vacuum polarization Self-energy Two-electron
Charge (fm) Coulomb  Breit Total Coulomb Breit Total Lamb shift

32 4.07 0.0 0.0 0.0 -0.5 00 —05 -04

54 4.78 0.2 0.0 0.2 -1.6 -02 -—1.38 -1.6

66 5.21 0.4 0.1 0.6 -2.8 -04 =32 -2.7

74 5.37 0.7 0.2 0.9 -3.8 -0.8 —46 -3.7

83 5.519 11 0.4 1.6 =53 -14 -67 =52

92 5.860 1.8 0.8 2.6 -74 -23 =97 =7.1
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TABLE Il. Various components of the two-electron contribution to the ground-state energy of some heliumlike ions and a
comparison with experiment (in eV). The errors assigned for the “1st order RMBPT” values are due to a variation of the nuclear
Rums value by 1%. The “2nd order RMBPT” values include two Breit interactions but no retardation. 8wl ‘order RMBPT”

values include only one Breit interaction.

Nuclear 1st order 2nd order =3rd order Nonradiative Lamb Total Experiment

charge RMBPT RMBPT RMBPT QED shift theory Mares al. [1]
32 567.61 —5.22 0.02 0.0 -04 562.0 562.5 = 1.6
54 1036.56 —7.04 0.03 0.2 -1.6 1028.2 1027.2 = 3.5
66 1347.45(1) —8.59 0.03 0.4 -2.7 1336.6 1341.6 = 43
74 1586.93(2) -9.91 0.04 0.6 -3.7 1573.9 1568 + 15
83 1897.56(4) -11.77 0.04 0.9 =52 1881.5 1876 = 14
92 2265.87(10) —14.16 0.05 1.3 =71 2246.0 +
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