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Two-Electron Lamb-Shift Calculations on Heliumlike Ions
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Complete second-order calculations of the two-electron contribution to the ground-state ener
heliumlike ions are presented and compared with recent experimental results. Calculations in
relativistic many-body effects and two-electron Lamb-shift (vacuum-polarization and self-ene
contributions as well as the recently presented nonradiative QED corrections. Agreement be
experimental and theoretical results verifies the many-body part of the calculation. The accura
the results is not high enough to test the QED part of the calculations, but an improvement by h
order of magnitude would provide an experimental test of the QED effect for heavy ions beyon
first-order Lamb shift.

PACS numbers: 31.10.+z, 31.15.Ar, 31.30.Jv
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The experimental situation concerning heavy-ion sp
troscopy has improved drastically in recent yea
Electron-beam ion trap (EBIT) and super-EBIT facilitie
together with storage rings with improved cooling faci
ties have made it possible to study highly charged io
with increasing precision. Also on the theoretical si
corresponding progress has taken place.

Using the super-EBIT facility at Lawrence Livermor
National Laboratory, Marrs, Schneider, and Stöhlker
have recently measured the two-electron contribution
the ground-state energy of some heavy heliumlike ions
comparing the ionization energy of heliumlike and hydr
genlike ions of the same elements. Data of this kind
particularly interesting for testing calculations of the tin
two-electron QED contribution, since the dominating on
body parts are completely eliminated. We shall pres
here such calculations and compare them with the exp
mental results of Marrs, Schneider, and Stöhlker.

QED corrections to the energy of heliumlike ions, co
rect to ordersad5mc2 wherea is the fine-structure con
stant, were derived long ago by Araki and Sucher [
Considering the two-photon two-electron contribution on
the leading terms in theZa expansion are included in
their expressions. These terms are correct at the l
sad2sZad3mc2. However, for heavy highly charged ion
whereZa approaches unity, theZa expansion is no longe
meaningful. Here, it is necessary to take into acco
the nuclear potential interaction to all orders by means
numerical techniques. The starting point is then sing
electron states generated in the nuclear field, rather
free-electron states. This technique was first applied
self-energy calculations on hydrogenlike heavy ions [
We have recently developed a numerical technique
heavy ions with more than one electron and applied thi
self-energy and vacuum-polarization calculations [4–7
well as to calculations of the nonradiative QED effect [8
Related calculations have also been performed by o
groups using different numerical techniques [9,10].
0031-9007y96y76(2)y204(4)$06.00
-
.

s

]
o
y

-
e

-
t

ri-

.

el

t
f
-

an
n
.
r
o
s

er

The many-body contribution to the Lamb shift can
first approximation be regarded as ascreeningof the
single-electron Lamb shift. This screening can be e
mated by means of a modification of the nuclear poten
[4,9,11]. In this way, however, it is not possible to tre
the exchange effect and the effect due to transverse
tons in an exact way. In order to reach high accurac
is of importance to perform many-body Lamb-shift calc
lations without any approximations. We have for the fi
time performed such calculations, complete to second
der, and the results will be presented here.

The two-photon contributions to the electron-electr
interaction for two-electron systems are represented
the Feynman diagrams in Fig. 1. The first line rep
sents the “nonradiative” diagrams, the “ladder” (a) and
the “crossed-photon” (b) diagrams. The ladder diagram
contains the leading many-body (second-order) contri
tion. The remaining part of that diagram together with t
cross diagram represents the nonradiative QED effects
calculated for light elements by Araki and Sucher in t
1950s [2], and more recently by the Göteborg and No
Dame groups for general nuclear charges [8,10]. The
ond line in Figs. 1(c) and 1(d) represents the two-elect
vacuum polarization and the last line [1(e) and 1(f)] t
two-electron—orscreened—self-energy. We shall her
be concerned with the calculation of the two-electron La
shift [diagrams 1(c)–1(f)].

The vacuum-polarization and self-energy calculatio
have been performed along the same line as in our rece
published works [4–7]. In this Letter we use units whe
h̄ ­ e0 ­ e ­ c ­ 1. The single-electron states are ge
erated in the field of the nucleus by solving the Dirac eq
tion with the nuclear potentialusrd,

hextjil ­ fa ? p 1 bm 1 usrdg jil ­ ei jil .

This equation is solved by the method of discretizat
[12]. Finite nuclei are used with the experimentally d
termined radius and a uniform charge distribution.
© 1996 The American Physical Society
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FIG. 1. Feynman diagrams representing the two-photon c
tribution to the electron-electron interaction for heliumli
ions. The first row, the “ladder” (a) and the “crossed-photo
(b) diagrams, represent the nonradiative part, and the rema
diagrams represent the two-electron Lamb shift, i.e., vacu
polarization (c) and (d) and self-energy (e) and (f), respectiv

We are primarily interested here in the Lamb-sh
contributions for the ground state of the two-electr
system, and in evaluating the energy contributions
shall therefore assume that all external orbital lines h
the same energy,ea ­ eb ­ ec ­ ed.

Diagram 1(c) can be generated by perturbing the sin
photon exchange,kcdjV12jabl, by the vacuum-polarization
a

h

n-
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potential (Uehling and Wickman-Kroll),Vvp,

DEc ­
X

t

kcjVvp jtl ktdjV12jabl
ec 2 et

,

whereet fi ec. The contribution foret ­ ec from this
diagram is completely canceled by thekS2l2 term in Eq. (5)
as discussed later.

The leading (Uehling) part of diagram 1(d) is evaluat
in analogy with the Uehling part of the first-order vacuu
polarization [5] by replacing the Feynman gauge phot
propagator in the single-photon exchange

DFnmsx2 2 x1, vd ­ 2gnm

Z d3k
s2pd3

eik?sx22x1d

v2 2 k2 1 ie

by the charge-renormalized propagator

Dren
Fnmsx2 2 x1, vd ­ 2 gnm

a

p

Z d3k
s2pd3

3
Z `

1
dt

eik?sx22x1d

v2 2 k2 2 4t2 1 ie

3
p

t2 2 1

µ
2

3t2
1

1
3t4

∂
.

The remaining part of the diagram is evaluated in analo
with the Wichmann-Kroll part of the vacuum polarizatio
by taking the difference between the bound state and
free-electron polarization operators in the photon line [

The self-energy contributions [1(e) and 1(f)] are qu
similar to the corresponding contributions to the hyperfi
interaction, recently calculated by Perssonet al. [13].
These contributions can be obtained by perturbing
(unrenormalized) first-order self-energy,
kcjS1secd jal ­ 2i
2a

p

X̀
l­0

s2l 1 1d
Z dz

2p

Z
k2 dk

kcja
n
1 a2nCls1d ? Cls2djlskr1djlskr2d jal

fec 2 z 2 hexts1 2 ihdg sz2 2 k2 1 ied

­ 2
a

p

X̀
l­0

s2l 1 1d
Z

k dk
X

u

kcjanCljlskrd jul ? kujanCljlskrd jal
ec 2 eu 2 k sgnseud

, (1)
-
ass
lf-
the
-

on
tal
n

by the interaction with the other electron [sgnseud ­ 61
depending on the sign ofeu]. Perturbing the incoming
external orbital linejal leads to

DEe ­
X

t

kcjS1secd jtl ktdjV12jabl
ec 2 et

, (2)

with et fi ec. This represents the contribution due to di
gram 1(e), apart from the caseet ­ ec, which will be
considered later. There is a similar contribution for t
-

e

modification of the outgoing orbital line. The corre
sponding modifications have to be made also in the m
counter term, used in renormalizing the first-order se
energy. This leads to an analogous expression, and
renormalization of Eq. (2) is then obtained simply by in
serting the renormalized self-energy operator.

Perturbing the electron propagator by the interacti
leads to a modification of the Hamiltonian and the orbi
energyec in the denominator of Eq. (1). The modificatio
of the Hamiltonian leads to
DEf ­ 2
a

p

X̀
l­0

s2l 1 1d
Z

k dk
X
t,u

kcjanCljlskrd jul kudjV12jtbl ? ktjanCljlskrd jal
fec 2 eu 2 k sgnseudg fea 2 et 2 k sgnsetdg

F , (3)
205
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where

F ­ 1 1 fsgnseud 2 sgnsetdg
k

ec 2 ea 1 eu 2 et
.

This represents the contribution due to diagram 1(f).
The modification of the orbital energy leads to

DEref ­ kcdjV12jabl kcj

∑
≠

≠v
S1svd

∏
v­ec

jal

­
a

p

X̀
l­0

s2l 1 1d
Z

k dk
X
u

kcdjV12jabl kcjanCljlskrd jul ? kujanCljlskrd jal
fec 2 eu 2 k sgnseudg2 . (4)
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This is the finite contribution to diagram 1(e) whenet ­
ec. If the interaction is energy dependent, there is
additional term. This is not the case for the ground st
considered here. There is no contribution from the m
counter term to the last two expressions.

The two expressions in Eqs. (3) and (4) are both infra
and ultraviolet divergent, but the divergences cancel wh
the two contributions are added. This cancellation
related to the Ward identity. The explicit cancellatio
of the ultraviolet divergencies are handled by the use
dimensional regularization [14]. The infrared divergen
can explicitly be canceled by separating out forl ­ 0
the contributionec ­ eu in Eq. (4) and the contribution
ec ­ ea ­ eu ­ et in Eq. (3).

The second-order contributions considered here can
be derived in a more formal way, using theS-matrix
formalism and the Gell-Mann-Low-Sucher formula [15]

DE ­ ihf2kSs4dl 2 kSs2dl2g , (5)

in the limit where the adiabatic parameterh tends to zero.
Here, the second term, representing products of disc
nected first-order diagrams, is singular and cancels the
responding singularity of the reference-state contribut
(reducible part) of diagram 1(e). The remaining finite co
tribution from the reference state leads to the derivat
term Eq. (4).

In Table I we present the vacuum-polarization a
self-energy results for some heliumlike ions with nucle
charges ranging from 32 to 92. The results are separ
into Coulomb and Breit parts for the photon connecti
the two electrons. In Table II we collect the various co
tributions to the two-electron part of the energy and co
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pare with recent experimental results of Marrs, Schneid
and Stöhlker [1]. The all-order relativistic many-body re
sult (RMBPT) is also calculated and the nonradiative QE
contribution is taken from our recent publication [8]. I
Table III we compare the results of several recent theor
cal estimates of the two-electron energy contribution.

The results of Drake [16] are obtained by means of a
curately correlated nonrelativistic wave functions and t
QED corrections are calculated using expressions, cor
to order a3, derived by Araki and Sucher [2]. The re
sults of Plante, Johnson, and Sapirstein [17] are relativ
tic many-body calculations, corrected for the Lamb sh
using Drake’s QED data [16]. The results of Indelicat
Gorceix, and Desclaux [18] are obtained by multiconfig
ration Dirac-Fock calculations, using the “Welton” metho
[18] to approximate the Lamb shift.

The agreement between the various theoretical resul
generally quite good, which indicates that the earlier e
timates of the Lamb-shift contributions have been qu
accurate. Drake’s result suffers from the inaccuracy
the Za expansion for the QED and relativistic effects fo
heavy elements, which becomes particularly evident for
(Z ­ 83). On the other hand, Drake uses correlated hyd
genic wave functions and thus includes also higher-or
Coulomb correlation in the QED effects. The relative e
fect of correlation is largest for light elements, where t
absolute effect is smaller. Therefore, the missing corre
tion effect in our QED values is estimated to be at mo
of the order of 0.1 eV for all elements. The very wea
dependence of the nuclear structure on the results
investigated by calculating the first-order energy varyi
the nuclear parameters and using Fermi—and uniform
d-
TABLE I. Two-electron vacuum-polarization and self-energy contributions to the groun
state energy of some heliumlike ions (in eV).

Nuclear Rrms Vacuum polarization Self-energy Two-electron
Charge (fm) Coulomb Breit Total Coulomb Breit Total Lamb shift

32 4.07 0.0 0.0 0.0 20.5 0.0 20.5 20.4
54 4.78 0.2 0.0 0.2 21.6 20.2 21.8 21.6
66 5.21 0.4 0.1 0.6 22.8 20.4 23.2 22.7
74 5.37 0.7 0.2 0.9 23.8 20.8 24.6 23.7
83 5.519 1.1 0.4 1.6 25.3 21.4 26.7 25.2
92 5.860 1.8 0.8 2.6 27.4 22.3 29.7 27.1
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and a
nuclear
TABLE II. Various components of the two-electron contribution to the ground-state energy of some heliumlike ions
comparison with experiment (in eV). The errors assigned for the “1st order RMBPT” values are due to a variation of the
Rrms value by 1%. The “2nd order RMBPT” values include two Breit interactions but no retardation. The “$3rd order RMBPT”
values include only one Breit interaction.

Nuclear 1st order 2nd order $3rd order Nonradiative Lamb Total Experiment
charge RMBPT RMBPT RMBPT QED shift theory Marrset al. [1]

32 567.61 25.22 0.02 0.0 20.4 562.0 562.5 6 1.6
54 1036.56 27.04 0.03 0.2 21.6 1028.2 1027.2 6 3.5
66 1347.45(1) 28.59 0.03 0.4 22.7 1336.6 1341.6 6 4.3
74 1586.93(2) 29.91 0.04 0.6 23.7 1573.9 1568 6 15
83 1897.56(4) 211.77 0.04 0.9 25.2 1881.5 1876 6 14
92 2265.87(10) 214.16 0.05 1.3 27.1 2246.0 6
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charge distribution models to describe the extended n
cleus. The dominating numerical uncertainty comes fro
the uncertainty in theRrms values. A 1% variation of
the Rrms value gives a change of 0.01 eV forZ ­ 66 and
0.1 eV forZ ­ 92. The nuclear uncertainties do not affec
the QED contributions at the present level of accuracy.

The agreement between the experimental and theor
cal results supports the accuracy of the experimental a
many-body results, but the accuracy of the experimen
results is not yet high enough to seriously test the QE
part of the calculation. On the other hand, an improv
ment of only half an order of magnitude is required her
in order to achieve—for the first time—an experimenta
test of QED contributions for heavy elements beyond th
lowest-order Lamb shift.
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TABLE III. Comparison between various theoretical calcula
tions (in eV).

Z Ref. [17] Ref. [18] Ref. [16] Present work

32 562.05 562.1 562.1 562.0
54 1028.4 1028.2 1028.8 1028.2
66 1337.2 1336.5 1338.2 1336.6
74 1574.8 1573.6 1576.6 1573.9
83 1880.8 1886.3 1881.5
92 2246.0
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