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Globally Uniform Semiclassical Expressions for Time-Independent Wave Functions
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A semiclassical approximation is presented which describes the time-independent wave functio
as an integral over the Lagrangian manifold associated with the state. The function produced
is free of caustic singularities and satisfies the Schrödinger equation with an error that vanishe
everywhere uniformly in the classical limit. Illustrative calculations are presented for one-dimensional
systems.

PACS numbers: 03.65.Sq, 03.40.Kf, 03.65.Ge
n
ic
-

te
e

th
io
e,
e
if
c
t
n

i-
ir
r

om
-
in
i-
b

a
se
ob
d

i-
o
p
s
to
pl
n
d

m
cu
ed

r
ca

at
s

n

y
f

c
ils
in

of

tic
to
.

e
on
se
er
Semiclassical approximations for time-independe
wave functions have found many applications in phys
and chemistry [1–3]. Unfortunately, the simplest (prim
itive or WKB) semiclassical expressions have infini
singularities at caustics. At such boundaries betwe
classically allowed and forbidden regions of space,
semiclassical approximation breaks down the express
become incorrect. Although it is possible, in principl
to remedy this problem by smoothly piecing togeth
semiclassical expressions that are locally valid in d
ferent regions of space [4], this requires switching ba
and forth between different mixed coordinate-momen
representations and becomes tedious for multidimensio
systems [5].

It is clear that simple, globally uniform semiclass
cal expressions for the wave function are highly des
able. Ideally, these should consist of single, explicit fo
mulas that are accurate over all space and that bec
uniformly exact everywhere in the classical limit. Un
fortunately, the conventional approaches to develop
uniform approximations become complicated for multid
mensional systems and the resulting applications can
difficult, even when the approximations are not glob
[2,6]. Indeed, it is only in the one-dimensional ca
that the usual treatments have yielded practical, gl
ally uniform, expressions for wave functions of boun
systems [7].

In this paper we obtain globally uniform semiclass
cal expressions for time-independent wave functions
systems having arbitrary dimension. The formulas a
ply to states in the regular part of phase space in ca
where tunneling from one classically allowed region
another is unimportant. The expressions allow sim
evaluation of wave functions without switching betwee
multiple representations or matching functions at boun
aries. We verify the semiclassical formulas by perfor
ing numerical tests for one-dimensional systems; cal
lations for multidimensional systems will be present
elsewhere.

To simplify our presentation, we initially conside
a one-dimensional system. Our uniform semiclassi
0031-9007y96y76(12)y1990(4)$10.00
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expression for the wave function is then given by

csxd ­ N
Z

Ct exp

√
2

∑
gtsx 2 qtd2 1 iptsx 2 qtd

1 i
Z t

0
pt Ùqt dt

∏ .
h̄

!
dt , (1)

where pt and qt are the momentum and coordinate
time t for the classical trajectory which correspond
to quantum statejcl according to the usual WKB
prescription. The preexponential factor is defined by

Ct ­ s Ùpt 2 2igt Ùqtd1y2, (2)

with the phase of the square root chosen to makeCt a
continuous function oft. The time integration is over the
period of motions0, T d for a bound system and over a
infinite interval otherwise. In the simplest case,g is an
arbitrary, finite, positive constant. More generally, it ma
be chosen as an arbitrary, complex, analytic function ot
satisfying Reg . 0 andjgj , `. For a bound system,g

must, additionally, be periodic with periodT . Finally, N
is a normalization constant.

We wish to verify that Eq. (1) is a uniform asymptoti
solution to the Schrödinger equation. Since the deta
of the demonstration closely parallel those presented
Appendix D of [8], we will only summarize the main
steps here. Our strategy is to examine the effect
applying Ĥ 2 E to the wave function, whereĤ is
the Hamiltonian operator andE is the classical energy
associated withs pt, qtd. The result of this operation
would be identically zero for allx if c were the
exact wave function at energyE. More generally, it
is a function that measures the error incsxd. To
demonstrate that our expression is a uniform asympto
approximation, we show that this error is proportional
h̄2 and is bounded for all (finite) values of the coordinate

To accomplish this, we let̂H 2 E act on the integrand
and expand the result in powers ofx 2 qt . The product
of sx 2 qtdn and the exponential factor can then b
expressed in terms of time-derivative operators acting
the exponential factor. We reverse the direction of the
derivatives by integrating by parts an appropriate numb
© 1996 The American Physical Society
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of times. Contributions from the integration limits vanis
because the integrands are periodic (for bound system
because they tend to zero at the limits for any finitex (for
unbound systems).

The resulting integral then consists of terms prop
tional to h̄n, n ­ 0, 1, 2, . . .. Terms of zeroth and firs
order in h̄ vanish as a result of the classical equations
motion and Eq. (2) forCt. The only problematic factors
in the remaining, higher order, terms of the integrand
quantities of the formzlm ­ gls Ùpt 2 2igt Ùqtd2my2, where
l ­ 0, 1, 2, andm takes on various integer values. Su
l
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functions would cause the integrand to become infinite
they diverged for some real value oft. However, since
Ùpt and Ùqt do not vanish simultaneously (except at a fixe
point in phase space), thezlm never diverge along a rea
trajectory if g is restricted as described above. Und
these circumstances, the integrand is bounded for allt and
the integral is itself bounded for all values ofx, thus es-
tablishing the desired result.

Applying similar methods, it is possible to verify th
following expression for the wave function in the case
a system withf degrees of freedom:
csxd ­ N
Z

du Cu 3 exp

√∑
2sx 2 qud ? gu ? sx 2 qud 1 ipu ? sx 2 qud 1 i

Z u

p ? s≠qy≠u0d du0

∏ .
h̄

!
, (3)
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where the integral is over the Lagrangian manifo
associated with the state andu is a vector containingf
coordinates which span the manifold.p and q are f-
dimensional vectors containing the system’s momenta
coordinates.g is anf-dimensional square matrix whos
elements may be finite constants or, more genera
arbitrary, complex, analytic functions ofu. However,
the real parts of all eigenvalues of this matrix mu
be positive and, for bound systems, the elements
g must be2p periodic in each of the angle variable
The action integral is along an arbitrary path on t
manifold originating from an arbitrary constant poin
The preexponential factor is given by

Cu ­ fdets≠py≠u 2 2ig≠qy≠udg1y2, (4)
where the partial derivatives represent square matr
defined by

s≠zy≠udij ­ ≠ziy≠uj , z ­ p, q , (5)
and where the phase of the square root is chosen to m
Cu a continuous function ofu along the path used to
evaluate the action integral.

It is now straightforward to verify the following prop
erties of the one-dimensional expression (with analog
remarks applying to the general result): (1) With approp
ate choices ofg, it is an exact representation ofcsxd [9]
for systems with Hamiltonians that are at most quadra
functions of the momenta and coordinates. (2) It redu
to the primitive WKB expression when the stationa
phase approximation is applied to the integral. (3) It a
goes over to the WKB expression in the limit asg ! `.
(4) It reduces to the Fourier transform of the primitiv
WKB wave function in the momentum representation
the limit asg ! 0.

We note that the wave functions obtained in the la
two limiting cases are not uniform approximations sin
g does not obey the stated restrictions which imply th
it must not be chosen to be either̀or 0. Theg ­ `

wave function breaks down at caustics whereÙxt vanishes
while the g ­ 0 result breaks down more globally du
to singularities in the momentum wave function whe
Ùpt vanishes. The Maslov [4] procedure for producing
globally uniform result would be to multiply the primitive
d
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wave functions by switching functions which essential
kill the singularities, apply the modifiedg ­ ` andg ­ 0
expressions in their respective regions of validity, a
smoothly join the results together. Our single express
with an intermediate choice forg, however, remains
valid everywhere and can be used for all values ofx
without having to introduce switching functions, shutt
between representations, or match wave functions.
effect, the expression interpolates between the coordin
and momentum representations and thereby avoids
caustics which limit the useful domain of each of the
representations.

The form of Eqs. (1) and (3) clearly suggests a re
tionship to earlier semiclassical treatments associated w
coherent states. Indeed, our results can be regarde
time-independent analogs of certain coherent-state–ba
uniform expressions for the time-dependent propaga
[8,10,11]. In addition, for choices ofg as particular
complex u-dependent functions, Eq. (3) reduces to e
pressions for the time-independent wave function pre
ously obtained by Littlejohn [12]. A more distant family
tie exists between our results and a number of ot
coherent state treatments of the time-independent w
function [13].

In the case whereg is chosen to be constant an
real, our results are closely related to those of the froz
Gaussian approximation (FGA) of Heller and co-worke
[9,14]. This popular semiclassical treatment was deriv
[9] by heuristically generalizing an expression for wav
functions of systems with quadratic potentials. The FG
expression is the same form as ours except that it repla
the coefficientCt with a factor that can be written a
Bte2ia?vty4, where Bt is a positive function oft and
a and v are vectors containing the Maslov indice
and frequencies for the various degrees of freedom.
the one-dimensional case, it turns out thatBt ­ jCtj so
that the two treatments differ only in the phase of t
prefactor. In systems with more than one degree
freedom, however,Bt is not directly related toCt even for
separable Hamiltonians, so that the two approximatio
differ more strongly.
1991
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We now describe calculations which compare t
results of our approximation, for the case of real const
g, to the results of accurate quantum treatments and
the FGA. We examine two one-dimensional, anharmo
systems. The first system is a quartic oscillator with
Hamiltonian

Ĥ ­ 2
1
2

≠2

≠x2
1 c1x2 1 c2x4, (6)

where c1 ­ 0.5 and c2 ­ 0.1. The quantum calcula
tion was carried out by diagonalizinĝH in a large
harmonic oscillator basis. In the uniform semiclassi
calculations, the trajectories associated with various qu
tum states were determined by numerically searching
orbits satisfying the Bohr quantization condition. The
tegration overt in Eq. (1) was performed by the trape
zoid rule, andN was determined numerically to normaliz
the wave function to unity. The FGA calculation differe
from above only in the replacement ofCt by jCtje2ivty2

(wherev ­ 2pyT is the classical frequency of motion a
the energy of interest) and in the value ofg used. For
the case of the FGA, the choiceg ­ vy2 was found to
yield nearly optimal accuracy and was used in the c
culations. For the uniform treatment, the choiceg ­
vy2 sn ­ 0d andg ­ v sn . 0d was found to be more
accurate and was consequently applied [15]. It should
mentioned that the wave functions produced in both c
culations are rather insensitive tog and moderate varia
tions in our choices do not change the qualitative res
presented here.

As a measure of the errors in the semiclassical
proximations, we examined the quantity1 2 V, where
V ­ jkcjcqlj andcq is the accurate quantum wave fun
tion. Figure 1 shows that both the uniform and FG
wave functions are in excellent agreement with the qu
tum functions for the full range ofn investigated, but the
uniform results are much more accurate than those of
FGA for n . 0. In fact, the uniform technique become
monotonically more accurate with increasingn, as ex-
pected of a semiclassical approximation, while the FG

FIG. 1. Error in the uniform semiclassical and FGA wa
functions vs quantum number for the quartic oscillator.
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becomes progressively less accurate asn is increased.
This can be understood by recalling that the validity
the FGA is based on the harmonic approximation for t
potential which becomes less accurate asn increases.

The second system examined was the Morse oscilla
described by the Hamiltonian

Ĥ ­ 2
1
2

≠2

≠x2
1 Ds1 2 e2bxd2, (7)

whereb ­ s2Dd21y2. For the valueD ­ 10.5 used here,
the potential supports 20 bound states. The calculati
were performed in the same way as for the first syst
except that (a) quantum wave functions and semiclass
energies were obtained from analytical expressions,
(b) the values ofg that were found to be nearly optima
and that were used in the calculations werev0y2 and
vy2 for the FGA and uniform cases, respectively, whe
v0 is the harmonic frequency of motion for low energ
vibrations.

It is clear from Fig. 2 that, for largen, the FGA is far
less satisfactory for this system than it is for the quar
oscillator. Indeed, Fig. 3 shows that the high-energy FG
functions differ strongly from the quantum results ne
the turning points and are out of phase with the quant
and uniform functions. The latter effect, which is most
responsible for the large error described in Fig. 2, is
direct consequence of the incorrect phase of the F
integrand. The error is more pronounced for the Mor
system than for the previous one due to the asymmetry
the present potential.

Although, for this system, the uniform approximation
much more accurate than the FGA for alln, this accuracy
does not vary monotonically withn, as it did in the
previous case. Asn is raised,1 2 V first decreases but
then increases as one nears the dissociation limitsE ­
Dd; see Fig. 2. Figure 3 reveals that this is primarily d
to small errors in the uniform approximation’s descriptio
of the wave function in the region lying near and beyo
the right turning point.

FIG. 2. Error in the uniform semiclassical and FGA wav
functions quantum number for the Morse oscillator.
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FIG. 3. Wave functions of the Morse oscillator forn ­ 17.
Exact: solid lines, uniform semiclassical: long dashes; FG
short dashes.x. is the maximum classical value ofx.

One may suspect that this result signals the inabi
of the uniform approximation to treat even the “shallow
tunneling responsible for the tailing of wave functio
into classically forbidden regions. However, the excelle
quantum-semiclassical agreement that we have obse
for the wave function tails of the quartic oscillator an
the Morse oscillator at low energies argues against
conclusion. Instead, the observed inaccuracy is due
specific properties of the Morse system at energies n
the dissociation limit. At such energies,Ùpt and Ùqt

simultaneously become small as the particle approac
the right turning point since the derivative of the potent
is itself small there. This causes the quantitieszlm to
have large magnitudes, thus reducing the accuracy
the uniform approximation. As expected, the resulti
inaccuracies are primarily reflected in the portions of
semiclassical wave functions near the turning point.

Although the behavior observed in Fig 3 does not i
ply the categorical failure of our approximation for th
treatment of shallow tunneling, it does foreshadow su
a breakdown for the description of “deep” tunneling b
tween separate classically allowed regions. It is import
to note that the inability to treat deep tunneling is not d
to a breakdown in our proof thatsĤ 2 Edc ­ Osh̄2d.
Instead, it arises because this condition is generally in
ficient to guarantee thatc is accurate in tunneling zone
where the exact wave function vanishes more rapidly t
any power ofh̄ in the classical limit. To treat deep tunne
ing, we must probably replace our real integration path
Eq. (3) with appropriate complex contours [3].
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Our numerical results illustrate the accuracy that c
be achieved with the simple uniform approximation
Eq. (3) and suggest the suitability of this treatment
many applications [1–3]. For the case of constantg,
the uniform treatment can be regarded as a correc
version of the FGA. The correction found here is qu
substantial and is expected to be even more important
multidimensional systems due to the lack of a relations
between the prefactorsCt and Bt in such cases. It is
also worth mentioning that our uniform treatment link
the FGA to the WKB approximation and helps elucida
the impressive success [14] of the FGA. We inte
to present applications of the uniform approximation
multidimensional systems and explore different function
forms ofg in a separate publication.
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