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Globally Uniform Semiclassical Expressions for Time-Independent Wave Functions
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A semiclassical approximation is presented which describes the time-independent wave function
as an integral over the Lagrangian manifold associated with the state. The function produced
is free of caustic singularities and satisfies the Schrodinger equation with an error that vanishes
everywhere uniformly in the classical limit. lllustrative calculations are presented for one-dimensional
systems.
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Semiclassical approximations for time-independenexpression for the wave function is then given by
wave functions have found many applications in physics )
and chemistry [1—3]. Unfortunately, the simplest (prim- ¢(x)=N[ Crexp — [%(X —q)” +ipx — q)
itive or WKB) semiclassical expressions have infinite .
singularities at caustics. At such boundaries between n f d } i ar 1
classically allowed and forbidden regions of space, the : 0 Prdr &7 / - @

semiclassical approximation breaks down the expressioRgnere p, and ¢, are the momentum and coordinate at
become incorrect. Although it is possible, in principle, ime ¢ for the classical trajectory which corresponds
to remedy this problem by smoothly piecing togetherq guantum stately) according to the usual WKB

ferent regions of space [4], this requires switching back

and forth between different mixed coordinate-momenta Co= (b = 2i7.4)'"", (2)
representations and becomes tedious for multidimensionalith the phase of the square root chosen to méakea
systems [5]. continuous function of. The time integration is over the

It is clear that simple, globally uniform semiclassi- period of motion(0, T') for a bound system and over an
cal expressions for the wave function are highly desirinfinite interval otherwise. In the simplest casejs an
able. Ideally, these should consist of single, explicit for-arbitrary, finite, positive constant. More generally, it may
mulas that are accurate over all space and that beconie chosen as an arbitrary, complex, analytic function of
uniformly exact everywhere in the classical limit. Un- satisfying Res > 0 and|y| < . For a bound systerny,
fortunately, the conventional approaches to developingnust, additionally, be periodic with peridd. Finally, N
uniform approximations become complicated for multidi- is a normalization constant.
mensional systems and the resulting applications can be We wish to verify that Eq. (1) is a uniform asymptotic
difficult, even when the approximations are not globalsolution to the Schrddinger equation. Since the details
[2,6]. Indeed, it is only in the one-dimensional caseof the demonstration closely parallel those presented in
that the usual treatments have yielded practical, globAppendix D of [8], we will only summarize the main
ally uniform, expressions for wave functions of boundsteps here. Our strategy is to examine the effect of
systems [7]. applying H — E to the wave function, whered is

In this paper we obtain globally uniform semiclassi-the Hamiltonian operator anfl is the classical energy
cal expressions for time-independent wave functions o@ssociated with( p;,g,). The result of this operation
systems having arbitrary dimension. The formulas apwould be identically zero for allx if  were the
ply to states in the regular part of phase space in casexact wave function at energf. More generally, it
where tunneling from one classically allowed region tois a function that measures the error if(x). To
another is unimportant. The expressions allow simplelemonstrate that our expression is a uniform asymptotic
evaluation of wave functions without switching betweenapproximation, we show that this error is proportional to
multiple representations or matching functions at bounds? and is bounded for all (finite) values of the coordinate.
aries. We verify the semiclassical formulas by perform- To accomplish this, we lei — E act on the integrand
ing numerical tests for one-dimensional systems; calcuand expand the result in powers.of— ¢;. The product
lations for multidimensional systems will be presentedof (x — ¢,)" and the exponential factor can then be
elsewhere. expressed in terms of time-derivative operators acting on

To simplify our presentation, we initially consider the exponential factor. We reverse the direction of these
a one-dimensional system. Our uniform semiclassicatlerivatives by integrating by parts an appropriate number
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of times. Contributions from the integration limits vanish functions would cause the integrand to become infinite if
because the integrands are periodic (for bound systems) tirey diverged for some real value of However, since
because they tend to zero at the limits for any firitdor ~ p, andg, do not vanish simultaneously (except at a fixed

unbound systems). point in phase space), thg, never diverge along a real
The resulting integral then consists of terms proportrajectory if v is restricted as described above. Under
tional to i", n =0, 1, 2,.... Terms of zeroth and first these circumstances, the integrand is bounded foraait

order inZ vanish as a result of the classical equations othe integral is itself bounded for all values of thus es-
motion and Eg. (2) foiC,. The only problematic factors tablishing the desired result.

in the remaining, higher order, terms of the integrand are Applying similar methods, it is possible to verify the
quantities of the formy,, = y'(p, — 2iy,q,)~"/%, where following expression for the wave function in the case of
1 =0, 1, 2, andm takes on various integer values. Su?ha system withf degrees of freedom:

6
v =N [ avc, xexp([—@ “a) e ) im0+ [ b e/ ae | / h>, ©)

where the integral is over the Lagrangian manifdldwave functions by switching functions which essentially
associated with the state amddis a vector containing  Kill the singularities, apply the modified = « andy = 0
coordinates which span the manifolgp and q are f-  expressions in their respective regions of validity, and
dimensional vectors containing the system’s momenta ansinoothly join the results together. Our single expression
coordinates. v is an f-dimensional square matrix whose with an intermediate choice foy, however, remains
elements may be finite constants or, more generallyalid everywhere and can be used for all valuesxof
arbitrary, complex, analytic functions of. However, without having to introduce switching functions, shuttle
the real parts of all eigenvalues of this matrix mustbetween representations, or match wave functions. In
be positive and, for bound systems, the elements oéffect, the expression interpolates between the coordinate
v must be27 periodic in each of the angle variables. and momentum representations and thereby avoids the
The action integral is along an arbitrary path on thecaustics which limit the useful domain of each of these
manifold originating from an arbitrary constant point. representations.

The preexponential factor is given by The form of Egs. (1) and (3) clearly suggests a rela-
Co = [detap/a6 — 2iyaq/a6)]"/?, (4) tionship to earlier semiclassical treatments associated with

where the partial derivatives represent square matriceoherent states. Indeed, our results can be regarded as

defined by time-independent analogs of certain coherent-state—based
(02/00);; = 9z;/90;, Z=p,q, (5 uniform expressions for the time-dependent propagator

and where the phase of the square root is chosen to mak& 10,11]. In addition, for choices of as particular
Cy a continuous function of along the path used to complex #-dependent functions, Eq. (3) reduces to ex-
evaluate the action integral. pressions for the time-independent wave function previ-
It is now straightforward to verify the following prop- ously obtained by Littlejohn [12]. A more distant family
erties of the one-dimensional expression (with analogouie exists between our results and a number of other
remarks applying to the general result): (1) With appropri-coherent state treatments of the time-independent wave
ate choices ofy, it is an exact representation ¢fix) [9]  function [13].
for systems with Hamiltonians that are at most quadratic In the case wherey is chosen to be constant and
functions of the momenta and coordinates. (2) It reduceeeal, our results are closely related to those of the frozen
to the primitive WKB expression when the stationary Gaussian approximation (FGA) of Heller and co-workers
phase approximation is applied to the integral. (3) It alsd9,14]. This popular semiclassical treatment was derived
goes over to the WKB expression in the limit as— .  [9] by heuristically generalizing an expression for wave
(4) It reduces to the Fourier transform of the primitive functions of systems with quadratic potentials. The FGA
WKB wave function in the momentum representation inexpression is the same form as ours except that it replaces
the limit asy — 0. the coefficientC, with a factor that can be written as
We note that the wave functions obtained in the lastBB,e i*®!/4 where B, is a positive function ofs and
two limiting cases are not uniform approximations sincee and @ are vectors containing the Maslov indices
v does not obey the stated restrictions which imply thaiand frequencies for the various degrees of freedom. In
it must not be chosen to be eitheror 0. They = «  the one-dimensional case, it turns out tBat= |C;| so
wave function breaks down at caustics wherevanishes that the two treatments differ only in the phase of the
while the y = 0 result breaks down more globally due prefactor. In systems with more than one degree of
to singularities in the momentum wave function wherefreedom, howeverB, is not directly related t@, even for
p: vanishes. The Maslov [4] procedure for producing aseparable Hamiltonians, so that the two approximations
globally uniform result would be to multiply the primitive differ more strongly.
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We now describe calculations which compare thebecomes progressively less accuraternas increased.
results of our approximation, for the case of real constanThis can be understood by recalling that the validity of
v, to the results of accurate quantum treatments and dhe FGA is based on the harmonic approximation for the
the FGA. We examine two one-dimensional, anharmoni@otential which becomes less accurate:ascreases.
systems. The first system is a quartic oscillator with the The second system examined was the Morse oscillator

Hamiltonian Lo described by the Hamiltonian
IS B 2 4 . 1 92
H==50m Tax tax © H==— -5+ D= e PP (7)
X

where ¢; = 0.5 and ¢, = 0.1. The quantum calcula-
tion was carried out by diagonalizing/ in a large Whereg = (2D)”'/2. For the valueD = 10.5 used here,
harmonic oscillator basis. In the uniform semiclassicafthe potential supports 20 bound states. The calculations
calculations, the trajectories associated with various quarivere performed in the same way as for the first system
tum states were determined by numerically searching fopXcept that (a) quantum wave functions and semiclassical
orbits satisfying the Bohr quantization condition. The in-€nergies were obtained from analytical expressions, and
tegration over: in Eq. (1) was performed by the trape- (P) the values ofy that were found to be nearly optimal
zoid rule, andv was determined numerically to normalize and that were used in the calculations wesg/2 and
the wave function to unity. The FGA calculation differed @ /2 for the FGA and uniform cases, respectively, where
from above only in the replacement 6f by |C,|e~//2 @0 IS _the harmonic frequency of motion for low energy
(wherew = 277 /T is the classical frequency of motion at Vibrations. . _
the energy of interest) and in the value pfused. For  Itis clear from Fig. 2 that, for large, the FGA is far
the case of the FGA, the choige = w/2 was found to €SS satisfactory for this system than it is for the quartic
yield nearly optimal accuracy and was used in the cal9scillator. Indeed, Fig. 3 shows that the high-energy FGA
culations. For the uniform treatment, the choige= functions differ strongly from the quantum results near
w/2 (n=0)andy = w (n > 0) was found to be more the turr_ling points.and are out of phase With_ the_ guantum
accurate and was consequently applied [15]. It should b@nd uniform functions. The latter effect, which is mostly
mentioned that the wave functions produced in both calf€sponsible for the large error described in Fig. 2, is a
culations are rather insensitive toand moderate varia- direct consequence of the incorrect phase of the FGA
tions in our choices do not change the qualitative resultiitegrand. The error is more pronounced for the Morse
presented here. system than for the previous one due to the asymmetry of
As a measure of the errors in the semiclassical apthe present potential. ' o
proximations, we examined the quantity— €, where Although, for this system, the uniform approximation is
Q = (¢|yp?)| andy? is the accurate quantum wave func- Much more accurate than the FGA for alithis accuracy
tion. Figure 1 shows that both the uniform and FGAdoes not vary monotonically wit, as it did in the
wave functions are in excellent agreement with the quanPrevious case. As is raised,1 — () first decreases but
tum functions for the full range of investigated, but the then increases as one nears the dissociation limit
uniform results are much more accurate than those of th@); see Fig. 2. Figure 3 reveals that this is primarily due
FGA for n > 0. In fact, the uniform technique becomes 0 small errors in the uniform approximation’s description
monotonically more accurate with increasing as ex- ©Of the wave function in the region lying near and beyond
pected of a semiclassical approximation, while the FGAthe right turning point.
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Error in the uniform semiclassical and FGA wave FIG. 2. Error in the uniform semiclassical and FGA wave
functions vs quantum number for the quartic oscillator.

functions quantum number for the Morse oscillator.
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05 Our numerical results illustrate the accuracy that can
04l ‘ \ be achieved with the simple uniform approximation of
! |<—FGA Eqg. (3) and suggest the suitability of this treatment for
031 ’ ! \ many applications [1-3]. For the case of constant
ozl Unjform the uniform treatment can be regarded as a corrected
' ', o ’“\ Exact version of the FGA. The correction found here is quite
~ 01F fI g i ll\ ]l“ It \ substantial and is expected to be even more important for
< il ,= i ,‘ ! ,‘ ‘l ‘ \\ multidimensional systems due to the lack of a relationship
0.0 ) H‘\; \: ‘1’ ‘| [ - between the prefactor€, and B, in such cases. It is
PR H, l" l " ‘\ | also worth mentioning that our uniform treatment links
' \‘ ‘ “, \U l’ the FGA to the WKB approximation and helps elucidate
02} | W the impressive success [14] of the FGA. We intend
sl ‘”' Xs to present a}pplications of the uniform gpproximatio_n to
Rl I multidimensional systems and explore different functional
04 . \ . forms of y in a separate publication.
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FIG. 3. Wave functions of the Morse oscillator far= 17. ences and Humanities.

Exact: solid lines, uniform semiclassical: long dashes; FGA:
short dashes.x- is the maximum classical value of
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