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Mean Field Approach to Bayes Learning in Feed-Forward Neural Networks
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We propose an algorithm to realize Bayes optimal predictions for feed-forward networks which is
based on the Thouless-Anderson-Palmer mean field method developed for the statistical mechanics of
disordered systems. We conjecture that our approach will be exact in the thermodynamic limit. The
algorithm results in a simple built-in leave-one-out cross validation of the predictions. Simulations for
the case of the simple perceptron and the committee machine are in excellent agreement with the results
of replica theory.

PACS numbers: 87.10.+e, 64.60.Cn

Methods of statistical mechanics have been successfullp an inputs for a net with weightsw; the output may
applied to the understanding of a neural network’s abilitype corrupted by an independent noise process. If the
to infer an unknown rule from examples. For a review,unknown parametersv are randomly distributed with
see [1-3]. Based on the pioneering work of Gardner [4]some prior probabilityp(w), then according to Bayes
the typical learning behavior of neural nets was studiedtheorem our knowledge abowut after having observeg:
by using statisticabnsemble®f networks. It was soon examples is expressed by the posterior density
realized [5—7] that such an ensemble approach has a m
natural equiva.lent in the Bayesian methods of statistics. p(w|D,) = Z ' p(w) l_[ P(oH|w,sH), 1)

In the Bayesian approach [8] one assumes that the u=1

prior uncertainty about unknown parameters, e.g., network

couplings, which have to be inferred from random datawhere Z = [d[wlp(w)[];-, P(c*|w,s*) is the parti-

can also be encoded in a probability distribution, thetion function. This equation enables us to calculate Bayes
so calledprior. On average the optimal prediction of optimal estimates for various quantities. The best esti-
novel data cannot be realized by a network in which thenate for the weightsy, which minimizes the cost func-
parameters take specific values, but only by performing ation (W — w)?), is given by the posterior meah = (w).
ensemble average over the so-cajedteriordistribution ~ The angle brackets denote averages over the posterior (1).
of parameters. The optimal predictive probability [13] for an outpatto

Several attempts have been made to implement Bayesnew inpus is given byP B4 (a|s) = (P(o|w,s)). Our
methods as an algorithm in the context of neural networlapproach is based on using the TAP formalism to compute
learning [7,9,10]. In this Letter we propose an algorithmsuch averages.
for a multilayer network model that is expected to realize In the following we will specialize on théree com-
Bayes method exactly in the thermodynamic limit of largemittee maching14], composed of an input layer with
networks and large sample size, under the assumptignput units and a second layer &f hidden units with
that the input data are drawn at random from a knowrnonoverlapping receptive fields. The network is built
distribution. The basic idea is to perform averages oveput of K subperceptrons with weight vectorg, each
the posterior analytically, using mean field techniquedaving N/K couplingswj.. A hidden neuronk com-
well known in statistical mechanics. In contrast to theputes an individual outputr, = sgnA;) to its inputs
replica method [4], such a mean field calculation has tojt, j = 1,...,N/K, where the internal field is given by
be performed for fixed random data. Our analysis followsA; = \/K/N w; - s;. The output neuron returns the ma-
the approach of Thouless, Anderson, and Palmer (TAPjprity vote o(w,s) = sgnK ~'/2>, o) as the final out-
[11] as adapted to the simple perceptron by Mézard [12]put of the net.
and provides a novel connection to Bayesian predictions. We will now derive equations for the posterior average

To explain the Bayes method, let us assume thadf the weights(w;;). The observation that the internal
we observe a set of input-output data pails, = fields Ay become Gaussian in the thermodynamic limit
(s',oh),...,(s™, o™), where for fixed inputs the outputs N — « allows us to obtain closed equations for )
o™ are generated independently from a conditional proband to derive an expression for the Bayesian prediction
ability distribution P(o#|w,s*). In the context of neural PB%¢s(o|s). We consider a simple noise model in which
networks, we can think oP as describing the output  the output bit is flipped with probabilityl + ¢#)~'. Up
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to a normalizing constant we may writ{o*|w,s*) as correspond to a single component only. Note that the
fluctuations of the internal field with respect to thel
F(A¥) = Trpr_sy ]_[ O(ap AY) posterior mean (which depends on the inpti) is non-
k Gaussianpecause the different terms in the sum become

_ _ 1 < slightly correlated.
B — ¢ B — K
x [e 1= )®< VK ;U’ )} Using the Gaussian ansatz to compute the auxiliary
(2)

averages, all we need to do in order to close our set of
TAP equations (4) and (5) is an expression for the second
We introduce auxiliary variables;, and rewrite the moments ofv;. Here we make the further assumption

partition function in (1) as that these moments are self-averaging quantities when
- the inputs are independent random vectors with zero

7 :fd[w]p(w)n[[ H<M>F(AP«) means and second momerigs;; = b‘le,], allowing
“ k 2m for spatially organized data. In this case we get in the

;{ [k Z u u thermodynamic limit
X exp iq — Xi Wi * S
N % “ ~ (Skn£

A = (v vf), =

N
. MoA M
— 1 Xk Ak j“ . (3)
k X Zcfj(<wikwjk> = Wity wWjr) ;
We will consider a prior that factorizes over hidden units; b 6
the distribution forw, is chosen to be Gaussian with (6)

: k
covarianced;;. By introducing fields conjugate to the i, the last step we have replaced the auxiliary mean with
weights, we Ccan show that the posterior mean is givefhe fyll mean neglecting terms of ordéyN. Hence

by an expression for the yet unknown second moments of
|k " P u the weightsw is now needed. In general, it can be
wik) =i N Z<xk>ZAjlslk- (4)  also found from the cavity approach. Here we use a
K ! simpler approach, based on our choice of a Gaussian
In order to obtain the expectations of the variabiés prior p(w), the exact resuld.;;(wiwe) (A~ = N/K
it is useful to introduce the auxiliary average), follows then from (3). The choica* = (C*)™! results
[d[w]p(w) 0]_[,,¢M F(AY)/ [dwlpw) [1,+, F(A ) in Ay =1~ (K/N) Zi,j Cij{wir) (wji). . _
over a posterior, where theth pattern is kept out of the ~ An explicit expression for the average (5) is easily

training set. By introducing fields Conjugate j(s’, we obtained using that the internal fields are Gaussian,
obtain

(et = / T A8y = Tt L 11 Coreh
i{xp ) = = 5
¢ 3Ak . AL e ®) &,

-B _ o, B —
for an arbitrary prior. To express this average as a X [e t(—e )®<\/f Z‘Ti >:|
logarithmic derivative we split the internal field into its =
average and fluctuating parts, ie&k (A} Yu T vr, @)

with v = JK/N X ;(wjx — (wj).)s% by definition. whereH (1) = [7 dxe **/? /2 and
While Egs. (4) and (5) hold for arbitrary inputs and size

of the network, the following mean field approximation u <A,’(‘>M \/§<wk> C sk — Agixl)
is expected to be exact only in the thermodynamic limit A4 = A = S . (8)

m,N — «©, with « = m/N fixed. We have to assume

that also theinputs are drawn independently from a The auxiliary average<A,’f>M = (AY) — (w}) is ex-

distribution for which such a limit is meaningful. pressed in terms of the full one using a standard theorem
We follow arguments based on the cavity approachor Gaussian random variables. Note that in this case

of Parisi, Mézard, and Virasoro [12,15], who derivedthe difference between the full and auxiliary mean is of

mean field equations of the TAP type for a variety oforder 1, and thus cannot be neglected.

disordered systems. We assume that the non-GaussianBy solving the set of nonlinear equations (4) and (5)

fluctuations of thewj; with respect to(wjx), sum up  with respect to the optimal coupling vectas) we can

to a Gaussian distributed field, in the thermodynamic make predictions on new dasa One could directly im-

limit. This assumption is valid if the phase space consistplement the optimal vectofw) into a committee ma-

of only a single ergodic component. If there are manychine and predict-°P'(s) = o((w),s). A better approach

ergodic components, averages calculated in this way wills to use the optimal Bayes prediction for the output,
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which in the case of output noise is given 8y (s) = 0.50FT
sgno(w,s)). Although this binary rule can no longer be
implemented by a committee machine, it is possible to_, &
calculate B4 within our mean field approach. Since
the posterior distribution is independent of the new input
vector, we can again apply the Gaussian assumption to theso
internal field to obtain

B B £ <Wk> * S 0.20
(o5 = Tro e [ 111 "k\ﬁ )
% Sg"(K_l/2 Z 0'1‘) ) (9) o.1o§

The Bayes prediction can be implemented by a neural nete.co
work, using the architecture implied by (9). Obviously,
o B3 (s) and o°P'(s) are different except for the simple FIG. 1. The Bayes learning curve for the simple percep-
perceptron K = 1), a fact previously observed in [16].  tron with output noiseg = 0.5 and N = 50 averaged over
Another mportant advartage of the mean field apZ00 e Tre bl nes e e SujeLon esute (peer e
proach is the fa_ct that by ConStrPCtlon it yields an estlmqtéor)_ Tﬁe dashed line is the theoretical prediction. The dgtted
for the generalization error which occurs on the predicqine with larger error bars is the moving control estimate.
tion of new data. The generalization error for the Bayes
prediction is defined by B2 = (@ (—o(s) (o (W,s))))s,
where o(s) is the output of the teacher network and simulation results are shown in Figs. 1 and 2. Figure 1
(---)s denotes average over the input distribution. To obshows that there is very good agreement between theory
tain the moving control estimatofor leave-one-out es- and simulation, although the moving control estimate
timator) of e one removes theuth example from the fluctuates very much for small training set sizes. For
training set and trains the network using only the rethe committee machine the difference betweefiyes
mainingm — 1 examples. Theuth example is used for and €°P' vanishes for largex. This can be understood
testing. Repeating this procedure far=1,...,m and from the fact thatA, — 0 for @« — o, which implies
taking the mean value of the number of wrong classi-o°P!(s) — o Ba¥es(s).
fications, we obtain an unbiased estimate for the Bayes So far our approach has been tested on problems, where
generalization error witlm — 1 training data, which has the output data were actually generated by a teacher net
the form ey = L3, O(—a*(o(w,s")),). This ex-
pression fits nicely into the formalism of cavity fields and
can be computed easily within the algorithm. The leave-
one-out estimatoeﬁfé = %ZM O(—o*o(w),,s*)) of
the generalization error for the optimal learne¥' = i\
(O(—a(s)o((w),s)))s can be computed in a similar way. 0405 X
We have tested the performance of the TAP mean [Y <\
field algorithm for the case of spherical inpus; = §;;. osof N\
In order to demonstrate that the mean field algorithm™
equations (4) and (5) can be solved and are able to
generate the Bayes prediction we present simulations fog ;o
the following two cases: (1) the noisy simple perceptron
and (2) the noise-free committee machine wikh=
3 hidden units. The simulation results are compared®°'°
to theoretical results [17] and to the predictions of
the moving control estimator. It turns out that the g, IM_LI
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algorithm works very well even for smal = 15. In the 0 2 4

simulations presented here, we set= 50 for the simple  F|G. 2. The learning curve of th& = 3 committee machine
perceptron an&v = 60 for the committee machine. The with N = 60 averaged over 200 runs. The full line is for Bayes
N + mK coupled equations (4) and (5) are solved bylearning (upper curve shows prediction error and the lower

iteration from an initial solution, which is chosen to curve shows training error). The dashed line is the moving

be th luti found f _x | ith X control estimate for the Bayes error. The dotted line is for
€ he solulion found fonmn exampiles, Wi the optimal learner. The dash-dotted line is the moving control

between 1 and 10. The number of iterations require@stimate for the optimal learner. The moving control estimators
to reach the desired accuracy is typically 10—15. Théhave the larger error bars.
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