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We propose an algorithm to realize Bayes optimal predictions for feed-forward networks which
based on the Thouless-Anderson-Palmer mean field method developed for the statistical mechani
disordered systems. We conjecture that our approach will be exact in the thermodynamic limit. T
algorithm results in a simple built-in leave-one-out cross validation of the predictions. Simulations f
the case of the simple perceptron and the committee machine are in excellent agreement with the re
of replica theory.

PACS numbers: 87.10.+e, 64.60.Cn
fu
lit
w
[4
e

s
ic
t
o
t
h
f

th

y
o
m

iz
g
t
w
v
e

h

w
A
2

n
h

s
o
l

the

yes
sti-
-

(1).

ute

ilt

-

ge
l
it

ion
h

Methods of statistical mechanics have been success
applied to the understanding of a neural network’s abi
to infer an unknown rule from examples. For a revie
see [1–3]. Based on the pioneering work of Gardner
the typical learning behavior of neural nets was studi
by using statisticalensemblesof networks. It was soon
realized [5–7] that such an ensemble approach ha
natural equivalent in the Bayesian methods of statist
In the Bayesian approach [8] one assumes that
prior uncertainty about unknown parameters, e.g., netw
couplings, which have to be inferred from random da
can also be encoded in a probability distribution, t
so calledprior. On average the optimal prediction o
novel data cannot be realized by a network in which
parameters take specific values, but only by performing
ensemble average over the so-calledposteriordistribution
of parameters.

Several attempts have been made to implement Ba
methods as an algorithm in the context of neural netw
learning [7,9,10]. In this Letter we propose an algorith
for a multilayer network model that is expected to real
Bayes method exactly in the thermodynamic limit of lar
networks and large sample size, under the assump
that the input data are drawn at random from a kno
distribution. The basic idea is to perform averages o
the posterior analytically, using mean field techniqu
well known in statistical mechanics. In contrast to t
replica method [4], such a mean field calculation has
be performed for fixed random data. Our analysis follo
the approach of Thouless, Anderson, and Palmer (T
[11] as adapted to the simple perceptron by Mézard [1
and provides a novel connection to Bayesian predictio

To explain the Bayes method, let us assume t
we observe a set of input-output data pairsDm ­
ss1, s1d, . . . , ssm, smd, where for fixed inputs the output
sm are generated independently from a conditional pr
ability distributionPssmjw , smd. In the context of neura
networks, we can think ofP as describing the outputs
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to an inputs for a net with weightsw; the output may
be corrupted by an independent noise process. If
unknown parametersw are randomly distributed with
some prior probabilitypswd, then according to Bayes
theorem our knowledge aboutw after having observedm
examples is expressed by the posterior density

pswjDmd ­ Z21pswd
mY

m­1

Pssmjw, smd , (1)

where Z ­
R

dfwgpswd
Qm

m­1 Pssmjw , smd is the parti-
tion function. This equation enables us to calculate Ba
optimal estimates for various quantities. The best e
mate for the weightŝw, which minimizes the cost func
tion ksŵ 2 wd2l, is given by the posterior mean̂w ­ kwl.
The angle brackets denote averages over the posterior
The optimal predictive probability [13] for an outputs to
a new inputs is given byP̂Bayesssjsd ­ kPssjw , sdl. Our
approach is based on using the TAP formalism to comp
such averages.

In the following we will specialize on thetree com-
mittee machine[14], composed of an input layer withN
input units and a second layer ofK hidden units with
nonoverlapping receptive fields. The network is bu
out of K subperceptrons with weight vectorswk , each
having NyK couplings wjk . A hidden neuronk com-
putes an individual outputsk ­ sgnsDkd to its inputs
sjk , j ­ 1, . . . , NyK, where the internal field is given by
Dk ­

p
KyN wk ? sk. The output neuron returns the ma

jority vote ssw , sd ­ sgnsK21y2
P

k skd as the final out-
put of the net.

We will now derive equations for the posterior avera
of the weightskwjkl. The observation that the interna
fields Dk become Gaussian in the thermodynamic lim
N ! ` allows us to obtain closed equations forkwjkl
and to derive an expression for the Bayesian predict
P̂Bayesssjsd. We consider a simple noise model in whic
the output bit is flipped with probabilitys1 1 ebd21. Up
© 1996 The American Physical Society
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t,
to a normalizing constant we may writePssmjw , smd as

FsDmd ; Trs
m

k ­61

Y
k

Qssm
k D

m
k d

3

∑
e2b 1 s1 2 e2bdQ

µ
sm 1

p
K

KX
i­1

s
m
i

∂∏
.

(2)

We introduce auxiliary variablesx
m
k , and rewrite the

partition function in (1) as

Z ­
Z

dfwgpswd
Y
m

( Z Y
k

µ
dx

m
k dD

m
k

2p

∂
FsDmd

3 exp

"
i

s
K
N

X
k

x
m
k wk ? s

m
k

2 i
X

k

x
m
k D

m
k

#)
. (3)

We will consider a prior that factorizes over hidden unit
the distribution forwk is chosen to be Gaussian with
covarianceAk

ij. By introducing fields conjugate to the
weights, we can show that the posterior mean is giv
by

kwjkl ­ i

s
K
N

X
m

kxm
k l

X
l

Ak
jls

m
lk . (4)

In order to obtain the expectations of the variablesx
m

k
it is useful to introduce the auxiliary averagekOlm ­R

dfwg pswd O
Q

nfim FsDndy
R

dfwg pswd
Q

nfim FsDnd
over a posterior, where themth pattern is kept out of the
training set. By introducing fields conjugate tox

m
k , we

obtain

ikxm
k l ­

ø
≠F

≠D
m
k

¿
m

,
kFlm ­

≠ lnkFsDmdlm

≠kDm
k lm

(5)

for an arbitrary prior. To express this average as
logarithmic derivative we split the internal field into its
average and fluctuating parts, i.e.,D

m
k ­ kDm

k lm 1 y
m
k ,

with y
m
k ­

p
KyN

P
jswjk 2 kwjklmdsm

jk by definition.
While Eqs. (4) and (5) hold for arbitrary inputs and siz

of the network, the following mean field approximatio
is expected to be exact only in the thermodynamic lim
m, N ! `, with a ­ myN fixed. We have to assume
that also theinputs are drawn independently from a
distribution for which such a limit is meaningful.

We follow arguments based on the cavity approa
of Parisi, Mézard, and Virasoro [12,15], who derive
mean field equations of the TAP type for a variety o
disordered systems. We assume that the non-Gaus
fluctuations of thewjk with respect tokwjklm sum up
to a Gaussian distributed fieldy

m
k in the thermodynamic

limit. This assumption is valid if the phase space consi
of only a single ergodic component. If there are man
ergodic components, averages calculated in this way w
;

n

a

t

h

ian

s

ill

correspond to a single component only. Note that t
fluctuations of the internal field with respect to thefull
posterior mean (which depends on the inputsm) is non-
Gaussian,because the different terms in the sum becom
slightly correlated.

Using the Gaussian ansatz to compute the auxili
averages, all we need to do in order to close our set
TAP equations (4) and (5) is an expression for the seco
moments ofy

m

k . Here we make the further assumptio
that these moments are self-averaging quantities w
the inputs are independent random vectors with z
means and second momentssiksjl ­ dklC

k
ij , allowing

for spatially organized data. In this case we get in t
thermodynamic limit

lk ; kym

k ym
n lm . dkn

K
N

3
X
i,j

Ck
ijskwikwjkl 2 kwikl kwjkld ;

(6)

in the last step we have replaced the auxiliary mean w
the full mean neglecting terms of order1yN. Hence
an expression for the yet unknown second moments
the weightsw is now needed. In general, it can b
also found from the cavity approach. Here we use
simpler approach, based on our choice of a Gauss
prior pswd, the exact result

P
ijkwikwjkl sA21dk

ij ­ NyK
follows then from (3). The choiceAk ­ sCkd21 results
in lk ­ 1 2 sKyNd

P
i,j Ck

ijkwikl kwjkl.
An explicit expression for the average (5) is eas

obtained using that the internal fields are Gaussian,

kFsDmdlm ­ Trs
m

k ­61

Y
k

Hs2s
m
k z

m
k d

3

"
e2b 1 s1 2 e2bdQ

√
1

p
K

KX
i­1

s
m
i

!#
,

(7)

whereHstd ­
R`

t dxe2x2y2y
p

2p and

z
m

k ­
kDm

k lm
p

lk
­

q
K
N kwkl ? sm 2 lkikxm

k l
p

lk
. (8)

The auxiliary averagekDm
k lm ­ kDm

k l 2 kym
k l is ex-

pressed in terms of the full one using a standard theor
for Gaussian random variables. Note that in this ca
the difference between the full and auxiliary mean is
order 1, and thus cannot be neglected.

By solving the set of nonlinear equations (4) and (
with respect to the optimal coupling vectorskwl we can
make predictions on new datas. One could directly im-
plement the optimal vectorkwl into a committee ma-
chine and predictsoptssd ­ sskwl, sd. A better approach
is to use the optimal Bayes prediction for the outpu
1965
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which in the case of output noise is given bysBayesssd ­
sgnkssw , sdl. Although this binary rule can no longer b
implemented by a committee machine, it is possible
calculatesBayes within our mean field approach. Sinc
the posterior distribution is independent of the new inp
vector, we can again apply the Gaussian assumption to
internal field to obtain

kssw , sdl ­ Trsk ­61

Y
k

H

µ
2sk

s
K
N

kwkl ? s
p

lk

∂
3 sgn

√
K21y2

X
i

si

!
. (9)

The Bayes prediction can be implemented by a neural n
work, using the architecture implied by (9). Obviousl
sBayesssd and soptssd are different except for the simple
perceptronsK ­ 1d, a fact previously observed in [16].

Another important advantage of the mean field a
proach is the fact that by construction it yields an estim
for the generalization error which occurs on the pred
tion of new data. The generalization error for the Bay
prediction is defined byeBayes ­ kQsss2sssd kssw , sdldddls,
where sssd is the output of the teacher network an
k· · ·ls denotes average over the input distribution. To o
tain the moving control estimator(or leave-one-out es-
timator) of e one removes themth example from the
training set and trains the network using only the r
maining m 2 1 examples. Themth example is used for
testing. Repeating this procedure form ­ 1, . . . , m and
taking the mean value of the number of wrong clas
fications, we obtain an unbiased estimate for the Ba
generalization error withm 2 1 training data, which has
the forme

Bayes
MC ­

1
m

P
m Qsss2smkssw , smdlmddd. This ex-

pression fits nicely into the formalism of cavity fields an
can be computed easily within the algorithm. The leav
one-out estimatore

opt
MC ­

1
m

P
m Qsss2smsskwlm, smdddd of

the generalization error for the optimal learnereopt ­
kQsss2sssdsskwl, sddddls can be computed in a similar way

We have tested the performance of the TAP me
field algorithm for the case of spherical inputs,Cij ­ dij.
In order to demonstrate that the mean field algorith
equations (4) and (5) can be solved and are able
generate the Bayes prediction we present simulations
the following two cases: (1) the noisy simple perceptr
and (2) the noise-free committee machine withK ­
3 hidden units. The simulation results are compar
to theoretical results [17] and to the predictions
the moving control estimator. It turns out that th
algorithm works very well even for smallN ø 15. In the
simulations presented here, we setN ­ 50 for the simple
perceptron andN ­ 60 for the committee machine. Th
N 1 mK coupled equations (4) and (5) are solved
iteration from an initial solution, which is chosen t
be the solution found form 2 X examples, withX
between 1 and 10. The number of iterations requi
to reach the desired accuracy is typically 10–15. T
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FIG. 1. The Bayes learning curve for the simple perce
tron with output noiseb ­ 0.5 and N ­ 50 averaged over
200 runs. The full lines are the simulation results (upper cur
shows prediction error and the lower curve shows training
ror). The dashed line is the theoretical prediction. The dott
line with larger error bars is the moving control estimate.

simulation results are shown in Figs. 1 and 2. Figure
shows that there is very good agreement between the
and simulation, although the moving control estima
fluctuates very much for small training set sizes. F
the committee machine the difference betweeneBayes

and eopt vanishes for largea. This can be understood
from the fact thatlk ! 0 for a ! `, which implies
soptssd ! sBayesssd.

So far our approach has been tested on problems, wh
the output data were actually generated by a teacher

FIG. 2. The learning curve of theK ­ 3 committee machine
with N ­ 60 averaged over 200 runs. The full line is for Baye
learning (upper curve shows prediction error and the low
curve shows training error). The dashed line is the movi
control estimate for the Bayes error. The dotted line is f
the optimal learner. The dash-dotted line is the moving cont
estimate for the optimal learner. The moving control estimato
have the larger error bars.
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of the same architecture as the student net. Howev
for mismatched architectures the weight space may
more complex as indicated by the occurrence of repli
symmetry breaking [2] in the statistical mechanics studi
of such models. In such cases, as is known for spin gla
models [15,18], the possibility of having many solution
to the TAP equations may arise. This may deteriora
the convergence properties of the algorithm. In practic
applications the data generating source is unknown;
might be possible to recognize that the proposed netwo
model is a too bad approximation to the given dat
through the inability to solve the TAP equations.

It is important to investigate the robustness of the TA
algorithm against violations of the basic theoretical a
sumptions. For instance, the input distribution is typical
unknown for real world data, for which only empirical es
timates of the correlationsCij will be available. Extensive
investigations of such questions and of that of extendi
the approach to fully connected architectures will be pr
sented in forthcoming publications.
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