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Plaquette Resonating-Valence-Bond Ground State of CaV4O9
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A theoretical model is presented to explain the spin gap observed for CaV4O9. The underlying
lattice of the 1y5-depleted square lattice favors a formation of the plaquette resonating-valence
state. Inclusion of the frustrating second neighbor interaction enhances this tendency, leadin
quantum disordered state of a two-dimensional spin-1y2 Heisenberg model with a sufficiently big spi
gap compatible with experiments.

PACS numbers: 75.10.Jm, 75.30.–m, 75.40.–s
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Quantum disordered phases with a spin gap are of g
current interest. This topic has gained additional mom
tum by Anderson’s proposal of the resonating-valen
bond (RVB) state in the undoped parent materials o
high temperature superconductivity [1]. Some typical e
amples with spin gaps are the spin-1 antiferromagne
Heisenberg chain [2], the double chain spin-1y2 Heisen-
berg model [3], the spin-1y2 Heisenberg antiferromagne
on a kagomé lattice [4], and the Kondo spin liquid pha
of the Kondo lattice model at half filling [5].

Recently a new system with a spin gap was fou
experimentally by Taniguchiet al. for CaV4O9[6]. The
spin gap observed by magnetic susceptibility and nucl
magnetic resonance (NMR) measurements isDykB ­
107 K. In this paper we propose that the underlyin
lattice of the 1y5-depleted square lattice of CaV4O9,
see Fig 1, favors a new type of spin disordered ph
which may be called a plaquette resonating-valence-b
(PRVB) state.

Each vanadium ion occupies a crystallographica
equivalent site and is surrounded by a pyramid of ox
gens. First, let us discuss the electronic state of this clu
sVO5d22. In this configuration the vanadium ion is in th
V41 state with oned electron. Since V41 is surrounded
by a pyramid of oxygen ions, thed electron is in either
the dxz or dyz orbital. This twofold degeneracy is lifted
by a small Jahn-Teller distortion whose existence w
reported in [6], although its details are not yet clear [7
However, for our discussion of the spin gap, the deta
are not important because V41 has a magnetic moment o
spin 1y2 for which single ion anisotropy is absent.

The couplings between the spins on the vanadium i
are mediated by superexchange via the oxygen orbit
The nearest neighbor vanadium ions share an edge o
square of oxygens (edge sharing), while the next ne
est neighbor pairs share an oxygen at a corner (co
sharing). Superexchanges between the spins are pos
through hybridization with thepz orbitals of these oxy-
gens. Since the number of paths for edge sharing
0031-9007y96y76(11)y1932(4)$10.00
at
-
-
a
-
ic

e

ar

e
d

-
er

s
.
s

s
ls.
he
r-
er
ble

d

corner sharing is two and one, respectively, we exp
J1 sedge sharingd > 2J2scorner sharingd. Thus an appro-
priate model for CaV4O9 is the spin-1y2 Heisenberg model
on the 1y5-depleted square lattice

H ­ J1

X
NN

si ? sj 1 J2

X
NNN

si ? sj . (1)

The magnitude of the exchange couplings may be
timated from the susceptibility data [6]. At high tem
peratures it is reasonable to assume a Curie-Weiss t
behavior, and the Weiss constant is given bykBu ­
1
3 sss 1 1d sz1J1 1 z2J2d, where s is the spin quantum
number,z1 is the number of nearest neighbors, andz2 is the
number of next nearest neighbors. For the 1y5-depleted
square latticez1 ­ z2 ­ 3. From the intersect of the in-
verse susceptibility with the temperature axis it is estima
asu ­ 220 K [8]. Under the assumption ofJ1 ­ 2J2, we
obtainJ1ykB , 200 K.

To understand specific features of the 1y5-depleted
square lattice let us consider a cluster of four spins

FIG. 1. A model for CaV4O9 of the spin-1y2 Heisenberg
model with the nearest neighbor (solid lines) and the ne
nearest neighbor (broken lines) exchange interactions.
dot-dashed lines show the unit cell of the 1y5-depleted square
lattice.
© 1996 The American Physical Society
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TABLE I. Eigenstates of a plaquette.

S13 0 1 0 1
S24 0 0 1 1

S 0 1 1 0 1 2

Eg 2
3
2 J2 2

1
2 J2 2

1
2 J2 22J1 1

1
2 J2 2J1 1

1
2 J2 J1 1

1
2 J2

a plaquette. The Hamiltonian of this system is

Hplaquette ­ J1ss1 1 s3d ? ss2 1 s4d

1 J2ss1 ? s3 1 s2 ? s4d . (2)

This Hamiltonian is readily diagonalized as is shown
Table I, whereS13 (S24) is the spin quantum number o
s1 1 s3 (s2 1 s4) and S is the total spin quantum num-
ber. It is seen that the ground state of the plaquette i
singlet, and the first excited state is a spin triplet with
spin gap ofJ1 for J1y2 . J2. At J1 ­ 2J2 the spin neu-
tral excitation crosses with the spin triplet excitation.

To proceed further let us first discuss a simplifie
Heisenberg model on the 1y5-depleted square lattice with
only nearest neighbor couplings (J2 ­ 0). This model
is very interesting in its own right, because the groun
state of this model is probably disordered, having n
long range order, or at least very close to a quantu
phase transition, in spite of the fact that the lattice
bipartite and completely two dimensional. For this lattic
structure, there are two topologically inequivalent bond
One type of bonds, which will be called plaquette bon
hereafter, form a plaquette covering of all spins, s
Fig. 2. We introduce an exchange couplingJ for these
types of bonds. The other type of bonds, dimer bond
form a complete dimer covering of the lattice, and w
useJ 0 for the exchange coupling of this type. Althoug
our final aim is to discuss the ground state of the mod
with J ­ J 0, for the time being we considerJ and J 0

as independent parameters. In comparison, all bonds
equivalent in the square lattice. A dimer or plaquet
covering is possible in this case, too. However, in contra
to the above lattice, it is not unique and it is known th
the square lattice favors an antiferromagnetically order
ground state.

We begin our discussion from the limitJ ¿ J 0. In
this limit, as we have discussed (Table I withJ1 ­ J
and J2 ­ 0), four spins on each plaquette form a singl
ground state which has resonating-valence-bond chara
[1]. The ground-state energy of this state per spin
EPRVB ­ 2

1
2 J. In the other limit, J 0 ¿ J, the global

ground state is a collection of dimer singlets,Edimer ­
2

3
8 J 0. For J ø J 0, another possible ground state i

one with antiferromagnetic long-range order, since t
lattice is bipartite. The energy of the classical Néel sta
is ENéel ­ 2

1
8 J 0 2

1
4 J. These energies are plotted i

Fig. 3. The three states discussed here may be consid
as the simplest variational states for three different phas
a
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FIG. 2. Spin-1y2 Heisenberg model on the 1y5-depleted
square lattice with the nearest neighbor exchange interactio
Topologically there are two different types of bonds: plaque
bondsJ and dimer bondsJ 0.

At this level, the spin disordered phase, either the dim
phase or the PRVB phase, has a lower energy than
Néel state. Concerning the two singlet phases, it sho
be mentioned that they are different phases although
global symmetry properties are the same for the tw
phases. It can be shown that the wave function of t
dimer singlet state has no overlap with that of the PRV
state, based on the fact that the two wave functions ha
different transformation properties under reflection wi
respect to the dimer bonds: odd for the dimer singlet b

FIG. 3. Ground-state energies for the dimer singlet, the PRV
singlet, and the Néel ordered phase. The horizontal axisx̃ is
defined byJ ­ x̃J and J 0 ­ s1 2 x̃dJ , and energies are in
units ofJ . The energies obtained by second order perturbat
are shown by the dashed lines. The dots on the dashed l
are the points where the spin gap vanishes, see text.ESW is the
energy estimated by the linear spin wave theory atJ ­ J 0.
1933
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even for the PRVB singlet. Thus the two states can
be continuously connected by tuningJ andJ 0 from one to
the other limit.

It is necessary to improve the estimate of the grou
state energies for the three phases. For the singlet ph
we can use perturbation theories. Let us take the exam
of the PRVB state. When a dimer bond is introduce
polarization processes from the singlets on both end
the bond should be included. The polarization ene
per bond may be calculated by second order perturba
as2s43y576dJ 02yJ. A similar perturbation calculation is
also possible from the other limit of the dimer single
The results are summarized as

EPRVB ­ 2
1
2

J

∑
1 1

43
576

µ
J 0

J

∂2∏
, (3)

Edimer ­ 2
3
8

J 0

∑
1 1

1
4

µ
J
J 0

∂2∏
. (4)

These energy are also plotted in Fig. 3.
For the Néel ordered phase a possible improvemen

obtained by linear spin wave theory [9]. Extension
the linear spin wave theory to the present case is ra
complicated but straightforward. The ground-state ene
per spin in this approximation is

ENéelsJ ­ J 0d ­ 2J

∑
3
2

s2 1 0.325 248s

∏
, (5)

where s ­ 1y2 for the present model. AtJ ­ J 0 the
energy obtained by the spin wave theory,20.5376J,
is very close to that of the PRVB state estimated
second order perturbation,20.5373J. In the spin wave
theory it is possible to calculate the reduction of t
magnetic moment by the zero point fluctuations of t
magnons,ds ­ 0.288, which is nearly 50% larger than
the reduction for the square lattice,ds ­ 0.197, and
amounts to 58% of the magnitude of spin. Linear sp
wave theory shows that Néel order survives at this le
but is on the verge of a quantum phase transition.
view of the fact that the linear spin wave theory has
tendency to favor Néel order [10], more careful treatme
are necessary.

If there were a transition from the disordered phase
the Néel phase, it would probably be a second order tr
sition. In this case the spin gap vanishes at the tra
tion point. Therefore the critical point may be estimat
by examining the spin gap in the disordered phases.
spin-triplet excitation in a plaquette is mobile. It ca
hop to a neighboring plaquette with an effective ho
ping matrix elementJ 0y6, to a second neighbor plaque
tte with 2J 02y36J, and to a third neighbor plaquette wit
2J 02y216J. The polarization energies for the bonds co
nected to the triplet are different from the polarization e
ergy in the ground state,2s289y3456dJ 02yJ. From these
results the spin gap is calculated as

DPRVB ­ J

∑
1 2

2
3

µ
J 0

J

∂
2

111
864

µ
J 0

J

∂2∏
. (6)
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Similar second order perturbation gives the spin gap f
the dimer phase,

Ddimer ­ J 0

∑
1 2

J
J 0

2
1
2

µ
J
J 0

∂2∏
. (7)

Within the second order perturbation theory, the sp
gap vanishes atsJ 0yJdc ­ 1.215 from the PRVB side
and at sJyJ 0dc ­ 0.732 from the dimer side. These
points are shown by the dots in Fig. 3. This resu
suggests that in the narrow region between these critic
points antiferromagnetic long-range order would exis
However, the spin gap remains finite atJ ­ J 0 within the
present perturbation theory.

An alternative way to estimate the critical points is
cluster mean field theory. We explain the method wit
a simple example. For the PRVB state we consider
cluster with four spins on a plaquette under the influenc
of molecular fields coming from the dimer bonds,

HCMF ­ Jss1 1 s3d ? ss2 1 s4d

2 J 0sssz
1 2 sz

2 1 sz
3 2 sz

4d . (8)
In the cluster mean field theory the average of a sp
is determined by the self-consistency equation,s ­
ksz

1l. This four-spin problem can be solved analytically
and the critical value is obtained assJ 0yJdc ­ 3y4.
When a bigger cluster of 16 spins is used, the critic
value increases tosJ 0yJdc ­ 0.8044. One can use a
similar cluster mean field approximation for the dime
singlet. The smallest cluster of two spins givessJyJ 0dc ­
1y2. The next smallest, 8-spin, cluster givessJyJ 0dc ­
0.5378. From both sides the critical value increases as th
cluster size becomes larger. Therefore we may consid
sJ 0yJdc ­ 3y4 andsJyJ 0dc ­ 1y2 as the lower limits for
the critical points, if any. However, unfortunately, the
cluster size is not big enough to perform a reliable finit
size scaling to determine the existence or absence of
Néel phase.

All treatments discussed above suggest that the sp
1y2 Heisenberg model on the 1y5-depleted lattice with
only nearest neighbor couplings has a spin disorder
ground state in a wide region of parameter space. On
in a narrow region around the crossing point between t
PRVB phase and the dimer phase is there a possibility
antiferromagnetic long-range order. The recent quantu
Monte Carlo simulations by Katoh and Imada [11] sugge
that there is a spin gap ofD ­ 0.11J for the model with
J ­ J 0, consistent with the perturbation results.

Let us return to the original model, Eq. (1), keeping th
different exchanges for the dimer bonds and the plaque
bonds. It should be noted that the second nearest neigh
coupling is frustrating for Néel order. It may be bes
illustrated by considering the cluster mean field theor
Again we consider the smallest cluster for the PRV
singlet,
HCMF ­ Jss1 1 s3d ? ss2 1 s4d 1 J 00ss1 ? s3 1 s2 ? s4d

2 sJ 0 2 2J 00dsssz
1 2 sz

2 1 sz
3 2 sz

4d. (9)
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Since the eigenstates without the molecular field a
completely determined by quantum numbers listed
Table I, the critical value is obtained analytically a
s J 022J 00

J dc ­
3
4 . Thus we may conclude that the model fo

CaV4O9 has the quantum disordered ground state with
safe margin.

We can extend the second order perturbation the
for the spin gap of the PRVB state with the frustratin
exchange coupling, for which we obtain

DPRVB ­ J

Ω
1 2

2
3

sx 2 2yd 2
1

54
s7x2 2 10xy 1 10y2d

2
1

12
2x2 2 3xy 1 4y2

2 2 y
1

7
18

sx 2 yd2 1 y2

3 2 y

2
1

12
x2 1 2y2

3 2 2y
2

5
72

sx 2 yd2 1 y2

4 2 y

æ
, (10)

where x ­ J 0yJ and y ­ J 00yJ. From this result it is
seen that the gap increases asJ 00 increases. This behavior
is illustrated in Fig. 4 for the caseJ ­ J 0. A similar
behavior is observed in the expansion around the dim
limit which gives

Ddimer ­ J 0

Ω
1 2 x21

µ
1 2

3
2

y

∂
2

1
8

x22s4 2 4y 1 9y2d
æ

. (11)

It is clear that the quantitative results of perturbatio
theory are questionable atJ ­ J 0 ­ J1; this is shown by
the difference between the values of the spin gap for
model with only nearest neighbor coupling.D ­ 0.205J1
is obtained by the PRVB perturbation theory, on one han
and D ­ 0.11J1 by quantum Monte Carlo simulations
on the other hand [11]. When we use the results of t
quantum Monte Carlo simulations the magnitude of t
spin gap is too small compared with the experimen
value. The present perturbation result shows the tende
that the spin gap increases significantly when we inclu
the frustrating next nearest neighbor exchange of the or
of J2 ­ J1y2, which may lead to a reasonable value of th
spin gap compared with the experiments.

In conclusion, the spin-1y2 Heisenberg model on the
1y5-depleted square lattice is presented as a theoret
model for the spin gap of CaV4O9. It is shown that the
1y5-depleted square lattice is favorable for the quantu
spin disordered phase, which may be characterized as
PRVB singlet. When the frustrating exchange for th
corner sharing bonds is included, it is possible to expla
the large spin gap observed experimentally.

It is our great pleasure to acknowledge fruitful discu
sions with Masatoshi Sato, Hirokazu Tsunetsugu, Yosh
Kitaoka, and Maurice Rice. We thank N. Katoh and M
Imada for pointing out that some processes of second
der perturbation were missing in the original manuscr
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FIG. 4. The spin gap as a function of frustrating exchan
coupling,y ­ J 00yJ. For J 00yJ . 0.354 the spin gap deviates
from Eq. (10) because the minimum of the spectrum is differe
from sp , pd.
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