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Polarizability of Small Metal Particles: “Weak Localization” Effects
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It is shown that the static electric polarizability of a system of isolated small metal particle
sensitive to magnetic and spin-orbit interactions. This quantity grows with a magnetic field. Alth
the increase is typically not very large, its experimental observation seems to be feasible.
calculation is performed by taking into account the Coulomb interaction which leads to screenin
external electric field. The supersymmetry technique combined with the random phase approxim
is used.

PACS numbers: 73.20.Fz, 05.45.+b, 73.20.Dx
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Effects of weak localization attract considerable atte
tion in the study of disordered metals [1]. These effe
arise from interference of wave functions of conducti
electrons and are very sensitive to changing the magn
field, temperature, and other physical parameters wh
makes them very interesting from the experimental po
of view. Recently, similar phenomena have been obser
in ballistic mesoscopic structures [2] . An increase of t
average conductance with increasing magnetic field s
experimentally is in agreement with theoretical results
tained with a semiclassical analysis [3], random matrix t
ory [4], and nonlinear supermatrixs model [5].

In the above situations, the weak localization effe
show up in quantities related to a macroscopic elect
motion through the system which is inevitably open d
to leads attached to the sample. But what can happen
closed sample? Of course, one cannot speak about a
ductance because the system is macroscopically die
tric. In this case, the relevant quantity characterizing
system is the electric polarizabilitya which determines
the total dipole momentd arising in an external electric
field E

d 5 aE . (1)

For this physical quantity, one can ask the same ques
as for the conductance of an open system. Does the p
izability a depend on the magnetic field, concentration
magnetic or spin-orbit impurities? It is not a trivial que
tion because the static polarizability is a thermodynam
quantity while the above weak localization effects are o
served in kinetics. To the best of my knowledge, suc
problem has not yet been addressed.

In this Letter, I present results of the calculation
the average polarizabilitya of an isolated metal particle
assuming that the electron motion is chaotic. This c
be due to either impurities inside the particle or
nonideal shape of the surface. It is shown below t
the polarizability is really dependent on the symme
ensemble (orthogonal, unitary, and symplectic) and
change with, e.g., a magnetic fieldH. The final result
obtained can be written in a rather simple form
0031-9007y96y76(11)y1908(4)$10.00
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da ; aya0 2 1 ­ A0MtD, M ­ Sy4pksV ,

A0 ­

(
24 , model I ,
22 , model IIa ,
21 , models IIb, III ,

(2)

where, as in Ref. [6], model I corresponds to a syste
without magnetic or spin orbit interactions (orthogon
ensemble), model IIa can be obtained from the mod
I by applying a magnetic field, and models IIb an
III correspond to systems with magnetic and spin-orb
impurities, respectively.

Equation (2) is explicitly derived for particles with a
shape close to a sphere or disk. In the latter case
electric field is assumed to be directed perpendicular
the disk. The parametersS and V stand for the surface
area and the volume of the particle, respectively,ks ­
s8pe2nd1y2 is the Fermi-Thomas screening wave vecto
n ­ mp0y2p2 being the density of states at the Ferm
surface (p0 is the Fermi momentum,e and m are the
electron charge and mass). Equation (2) also contains
mean free timet of the elastic electron scattering an
the mean level spacingD ­ snV d21. The quantitya0 is
the classical polarizability which is equal to

a0 ­

(
R3s1 2 3yRksd , sphere ,

Sas4pd21s1 2 2yaksd , disk , (3)

whereR is the radius of the sphere anda is the thickness
of the disk.

The quantityda in Eq. (2) describes the first quantum
correction to the classical polarizability. The small d
mensionless parametertD characterizes the level mixing
Electrons in the particle interact with a local electric fie
which is essentially different from zero only near the su
face. This is the reason whyda contains the factorM.
The values ofA0 are quite funny, but I do not see any dee
physical reason for the doubling when changing from t
models IIb, III to the model IIa and from the model IIa
to the model I. As is seen from Eq. (2), applying th
magnetic field leads to an increase of the polarizabili
This phenomenon is reminiscent of the suppression of
weak localization discussed in Refs. [1–5] and is relat
© 1996 The American Physical Society
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to a partial destruction of the interference of wave fun
tions by the magnetic field.

The above effect was not noticed by Gorkov an
Eliashberg (GE) in their pioneering work [7] where the
suggested to use for a description of the small me
particles level-level correlation functionsRsxd obtained
from the Wigner-Dyson random matrix theory (RMT) [8]
Although later these correlation functions were derive
microscopically using the supersymmetry technique [6
no microscopical derivation of the polarizability ha
yet been done. The latter quantity is determined n
only by the energy levels but also by wave function
Knowing the functionsRsxd only, one cannot derive the
polarizability. [In fact, it is not clear how to do this within
RMT, and GE did not even try to calculate quantum
corrections to the static polarizability being concentrate
on the frequency dependent part which they could expre
under some assumptions through the functionsRsxd.]

The supersymmetry technique is an adequate to
for calculations of different physical quantities, and th
derivation of Eqs. (2) and (3) is done using this metho
As has been mentioned, the static polarizability is
thermodynamic quantity. At the same time, the nonline
s model is obtained from the dynamic linear respon
theory [6]. Nevertheless, provided all energy levels a
discrete and nondegenerate, the static susceptibility
equal to the dynamic one taken in the limitv ! 0, where
v is the frequency, and one can use thes model.

The conventional susceptibilityk usually calculated
within the supersymmetry technique is the response to
local electric field which decays in the bulk while the po
larizability a determines the dipole moment as a functio
of the external field. To calculate the latter quantity on
must take into account the Coulomb interaction betwe
the electrons leading to the screening of the electric fie
ve
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in the metal. Generally speaking, it is not possible to tr
systems with interaction using the supersymmetry te
nique, but what we need now is only to properly consid
the screening, and this can be done in the simple rand
phase approximation (RPA).

Within this approximation one should know th
density-density correlation functionPvsr, r0d. Formally,
it is a loop consisting of two Green functions with th
energy differencev. The function Pvsr, r0d contains
both the large classical contributionP0sr, r0d and a small
contributionP̃vsr, r0d describing interference effects

Psr, r0d ­ P0sr, r0d 1 P̃vsr, r0d . (4)

Introducing an effective electrostatic potentialFsrd, one
can write a closed system of equations for the dip
momentd in the external electric fieldE

d ­ d0 1 d̃, d0 ­ 2e2
Z

rP0sr, r0dFsr0ddr0 , (5)

d̃E 5e2
Z

FsrdP̃vsr, r0dFsr0ddrdr0 . (6)

Equations (5) are written in the linear approximation
P̃. The effective potentialFsrd satisfies the equation

DrF ­ 4pe2
Z

P0sr, r0dFsr0ddr0 , (7)

whereDr is the Laplacian, with the boundary condition

Fsrd ! 2Er , as jrj ! ` .

The potentialFsrd as well as its spatial derivatives mu
be continuous everywhere, and the pointr 50 is assumed
to correspond to the center of the metal particle. T
functionsP0sr, r0d andP̃vsr, r0d can be written in terms
of the retardedGR

´ sr, r0d and advancedGA
´ sr, r0d Green

functions in the standard form [9]
P0sr, r0d ­
1

2pi

X
s,s0

Z
ns´d kfGR

´1vsy, y0dGR
´ sy0, yd 2 GA

´ sy, y0dGA
´2vsy0, ydgld´ , (8)

P̃vsr, r0d ­ 2
1

2pi

X
s,s0

Z
fns´ 2 vd 2 ns´dgkGR

´ sy, y0dGA
´2vsy0, ydld´ , (9)
e
of

in

ro
n-
.

e

where the angular brackets stand for averaging o
impurities or the shape of the particle,y ­ sr,sd, ands

is the electron spin.
Formally, the validity of RPA is justified ifks ø p0.

Although in good metalsks , p0, RPA can still work
very well. The usual procedure is to calculate everythi
assuming formally thatks ø p0 and use real values of
the parametersks andp0 at the end.

Following this logic, Eqs. (5)–(7) can be considerab
simplified. The potentialFsrd varies at distancesk21

s ,
whereasP0sr, r0d at p21

0 . Averaging in Eqs. (8) and
integrating oveŕ , we see that in Eqs. (5) and (7) on
can make the substitutionP0sr, r0d ! 2ndsr 2 r0d and
come to equations of classical electrostatics. For exam
Eq. (7) reduces to the Poisson equation.
r

g

le,

To perform averaging in Eq. (9) one should use th
supersymmetry technique [6]. Reduction of the average
two Green functions in Eq. (9) to an integral over8 3 8
supermatricesQ is standard [6]. Similar transformations
for a current-current correlation function were done, e.g.,
Ref. [10]. In the limitv ø Ec, whereEc , DyR2 is the
Thouless energy (D is the classical diffusion coefficient),
the nonlinears model becomes zero dimensional (0D).

Sometimes, when deriving the 0Ds model it is im-
portant to integrate out nonzero harmonics ofQ instead
of simply neglecting them. In a good metal, the nonze
harmonics can be treated perturbatively, and their co
tribution can be taken into account without difficulties
As a result, the quantum part̃d of the dipole moment
can be written in terms of a definite integral over th
1909
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supermatricesQ which do not vary in space

d̃ ­ AsvdsB1 1 B2dE , (10)

E2B1 ­ e2nstDypd
Z

F2srddr , (11)

E2B2 ­ e2nsDypDd
X

e

e21

Ç Z
hesrdFsrddr

Ç2
,

(12)

wheree and hesrd are nonzero eigenenergies and eige
functions of the Laplacian with=hesrd ­ 0 at the surface.
The functionAsvd has the form

Asvd ­ sipvyDdf1 2 kQ11
33Q22

33lQ 7 kQ12
34Q21

43 lQg ,

(13)

wherek· · ·lQ stands for averaging with the free energy

F0fQg ­ ifsv 1 iddpyDgSTrLQ , (14)

and all the notations are the same as in Ref. [6]. T
minus sign in front of the third term in Eq. (13) relate
to the orthogonal ensemble whereas a plus sign stand
the symplectic one. The structure of the supermatrixQ is
such that the third term is zero for the unitary ensemb
In models IIb and III, the spin degeneracy is lifted an
one should properly substituteD by Dy2.

The term B1 can be obtained just by neglecting a
the nonzero harmonics whileB2 arises after integration
over them. If the screening were not important o
would substitute in Eqs. (11) and (12)Fsrd ! 2Er. The
calculations in Ref. [7] and recent work [11] were done
this way. Within such a treatment the ratioB2yB1 is of the
ordersRyld2, wherel is the mean free path. If the particl
is dirty, the termB1 in Eq. (10) can be neglected, and th
calculation of Ref. [11] reproduces the result of Ref. [7

However, the screening cannot be neglected [12,
because the parameterksR is usually large. To conside
the screening properly one should solve Eq. (7) a
substitute the solution forFsrd into Eqs. (5), (11), and
(12). The potentialFsrd has, in fact, already been
found for a sphere and film in Ref. [12], and one h
to compute only the remaining integrals. The potent
Fsrd is essentially different from zero in a narrow laye
with the thicknessk21

s near the surface, and this simplifie
the evaluation of the integrals. Remarkably, the te
B2 acquires an additional factorsksRd21 with respect to
the termB1 and can therefore be neglected for realis
parameters characterizing the metal cluster.

The integrals overQ in Eq. (13) can be calculated fo
an arbitrary frequency. To get the thermodynamic polar
ability one should take the limitv ! 0. In this limit both
the second and third terms in Eq. (13) are proportiona
sivd21 and so these terms give a nontrivial contribution
d̃. Carrying out the corresponding integrations, one com
finally to Eqs. (2) and (3). Details of the calculation wi
be published elsewhere [14]

The general result for arbitrary frequencies can
written substituting the coefficientsA0 in Eq. (2) byA0 1
1910
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AsvpyDd, where the functionAsxd should be taken from
Ref. [7] (with some misprints corrected in Ref. [13])
Thus, Eq. (2) can describe also low-frequency optic
properties providing the correct value of oscillations du
to the discreteness of the energy levels.

The “weak localization” effects considered above ca
be studied experimentally applying a magnetic fiel
Increasing the field, one changes from the orthogonal
unitary ensemble which leads, according to Eq. (2), to
growth of the polarizability. To observe the change of th
polarizability one can put a system of the isolated me
clusters into a capacitor and measure the change of
capacitance. The dielectric permeabilitye of the system
can be written in a simple form

e ­ ems1 1 4pafyV d , (15)

whereem is the permeability of the supporting medium
and f is the fraction of the volume occupied by the
clusters.

With Eq. (2), the change of the capacitancedC is

dC ; Cs`dyCs0d 2 1 ­ 2MtDbfs1 1 bfd21 , (16)

whereCsHd is the capacitance as a function of the ma
netic field,b ­ 3 for the sphere, andb ­ 2 for the disk.

Although the screening of the external electric field
very important, this effect has not always been cons
ered properly. In Ref. [7] the local field was assumed
be equal to the external one, and the polarizabilitya was
identified with the local susceptibilitykV which is sksRd2

times larger. This mistake was corrected in Ref. [12
where the value ofa0, Eq. (3), was derived and gener
alized for very small sizes of the cluster. In a later wor
[13] the frequency dependent part of the polarizability wa
calculated, and the authors tried to take into account
screening. However, they used a formula which cou
be correct only for dielectric clusters with a homogeneo
electric field inside them. Using such formulas, one com
to the valuedC , tDk21. The quantityk is of the order
of sksRd2 and so, such a value fordC is ksR times smaller
than that obtained in the present article.

Now, let us estimate the value of the effects consider
above for some realistic systems. For copper, one h
p0 . 1.5 3 108 cm. Assuming for a rough estimate tha
l ­ R, one obtains for particles with the radiusR ­ 50 Å

f1 1 s3fd21gdC . 2sp0Rd23pp0rB . 4.2 3 1026,

(17)

whererB is the Bohr radius.
Equation (17) gives a rather small value ofdC.

However, even smaller changes of the capacitance
already be measured by modern techniques (see, e
Ref. [15]). For the disk with the same radiusR the value
of dC can besRyad2 times larger thandC for the sphere,
Eq. (17).

To make the effect more pronounced one should eith
use clusters with a smaller size or choose a metal w
a smaller Fermi momentump0. This may increasedC
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by several orders of magnitude. At the same tim
decreasing the size of the cluster leads to an increas
the characteristic magnetic fieldHc of the crossover from
the orthogonal to the unitary ensemble. This field can
estimated calculating contributions of “Cooperon degre
of freedom.” The fieldHc corresponds to fluctuations o
the order of1, and one comes to the following equation

1
pnD

√
ch̄
2e

!2√Z
A2dr

!21

­ 1 , (18)

whereA is the vector potential in the London gauge, a
the integral should be calculated over the volume. For
spherical particle, one obtains for the crossover field

Hc ­
f0

R2p

s
15RmD

8pp0

R
l

­
f0

2pR2

3.6
p0R

sRyld1y2, (19)

wheref0 ­ hcye is the flux quantum.
Using the same parameters for the copper particle

before, we obtainHc ø 1 T. Both dC andHc grow fast
with decreasing the size of the particles and, therefo
making the particles smaller does not seem to be
good way to make experiments easier. However,
dependence ofHc on p0 is weaker than that ofdC, and
one can really try to choose a metal with a smallerp0.
Possibly, the best results can be achieved for semime
such as Bi, wherep0 is very small. One cannot exclud
also that an alteration of the polarizability with th
magnetic field played an important role in the rece
experiment on isolated rings [16].

The calculations presented above were done within
grand canonical ensemble. At the same time, for a rela
problem of persistent currents in mesoscopic rings
main contribution originates from the condition of th
conservation of the number of electrons [17]. Formal
the persistent current is expressed as a derivative o
magnetic flux of the number of electronsN at a fixed
chemical potential. This derivative is large becau
Cooperons contributing toN depend on the flux. One
can do the same for the electric susceptibility, but n
one obtains a derivative over the electric field. Howev
neither Cooperons nor diffusons contain the electric fi
and the derivative vanishes. Therefore, a differen
between the canonical and grand canonical ensem
does not seem to be important for this problem.

Mesoscopic effects are usually sensitive to temperat
and one may wonder if the dynamic response calcula
above survives in the limitvtinel ! 0, wheretinel is an
inelastic mean free time. Answering this question, it
important to emphasize again that the static polarizabi
for the small metal particles is athermodynamicquantity.
At a given electric field the induced dipole moment corr
sponds to the minimum of the free energy, and theref
the inelastic scattering cannot be crucial, destroying
quantum effects at an arbitrarily low temperature. At t
same time,dC can decrease with increasing the tempe
ture. Theory of this effect does not exist yet. Howev
for the copper particles under consideration the Thoul
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energyEc, which is possibly the characteristic energy o
the destruction of the quantum interference, is of the ord
of 103 K. So, at any reasonable temperature the quant
effects may exist.

In conclusion, it is demonstrated that the static elect
polarizability of small metal clusters depends on a ma
netic field, magnetic and spin-orbit impurities, and this
a new quantum size effect. Rough estimates show t
the variation of the polarizability with the magnetic fiel
can be observed experimentally in a system of small me
clusters. Possibly, the corresponding measurement will
done soon.

I am grateful to Charlie Marcus for information abou
the accuracy of high-resolution dielectric measurement
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