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Quantum Kinetics of Semiconductor Light Emission and Lasing
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Semiconductor light emission is analyzed as a paradigm of a nonequilibrium quantum mechanical
many-body problem. The medium excitations and the quantized light field inside and outside a
semiconductor slab are treated consistently. Splitting the photon density of states into a medium and a
vacuum induced contribution the arbitrarily strong semiconductor emission is described as spontaneous
emission into the vacuum induced part. With increasing gain narrowing peaks of growing intensity
evolve for each propagation direction, whereas under laser conditions one propagation direction is
favored by the cavity.

PACS numbers: 42.55.Px, 78.45.+h

The microscopic description of laser action in generain only one direction. For this system we obtain an exact

and particularly laser action in semiconductors is one ofelation between the emitted intensity and the radiative
the challenging topics in theoretical physics. A varietyloss in the carrier kinetics, which is valid for arbitrary
of models for semiconductor lasers has been developegkcitation strengths (emission intensities).
in the past decades, many of which are summarized in Generalizing a classical analysis by Henry [6] we
modern textbooks [1,2]. However, relatively little work first investigate the wave propagation problem in the
has been published which can be regarded as rigorowsemiconductor cavity. The medium boundary conditions
microscopic quantum theory. An exception is the workimply an abrupt change of the interband polarization from
by Korenman [3], where the technique of nonequilibriumthe inside to the outside,
Green's functions (GF) [4,5] has been applied to lasers.
However, the fundamental property of a laser as an
optically inhomogeneous, energetically open many-body
system was not considered.

The goal of this Letter is to address these probleméor notational simplicity we restrict our analysis here to
by describing the semiconductor laser as a well-defined E-polarized light propagating freely in the transverse
guantum-mechanical problem. Analyzing an exciteddirection, which is described by the vector potential
semiconductor slab in vacuum with the excited electronin Coulomb gaugeA(r, w) = ere(q )e'd*TA(x,q ., ®).
hole plasma inside the slab and an abrupt index changEhe average field satisfies Maxwell's equation
at the surface, the slab simultaneously serves as gain
medium and laser cavity. Therefore we describe this sys- 3_2 2 _
¢ o { 5t 4 (x)}A(x) 0, (2)
em solely by the Hamiltonian of the electron-hole plasma dx
interacting with the quantized light field plus appropriate
boundary conditions. We assume steady state conditionghere the wave numbey?(x) = (w2/c?)e(x, ) — ¢1.
and use the isotropic long wavelength limit for the opticalThe general solution isA(x) = cjA+(x) + c2A—(x),
functions of the semiconductor. To have a well-definedwvhereA. (x) andA_(x) = A4+ (—x) correspond to waves
model we start by considering a semiconductor slabpropagating from left to right and vice versa, respectively.
which is homogeneously excited and infinitely extendedJp to a normalization factor, which we choose as the
in the transversd y, z) direction, having a thickness  amplitude A, of the forward propagating solution (2)
in the x direction. This system has been chosen sinceA; (x), for x > L/2 (transmitted wave)A- is uniquely
due to homogeneity in the transverse direction, thedefined by the boundary conditions at the cavity facets.
three-dimensional (3D) light propagation problem canThe analysis shows that there is no average or classical
be solved exactly. However, using an infinite slab adield which describes lasing, so that we have to focus on
gain medium is exotic in the sense that in the transversthe next higher field average, i.e., the correlation function
direction an arbitrarily strong light amplification occurs.

L

elr,w) = 6(7 — |x|>6(x,a)) + 0<|x| — %) Q)

However, due to symmetry reasons the transverse energy > VN . e
currents cancel and do not contribute to the output loss Dij(r.t,x. 1) 4mihc Ailr, D4;(, £9)

of the slab, which remains only in thedirection. This

way one forces output losses (but not light propagation) = D;(r’t’,rt) . 3
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Using the nonequilibrium GF technique [4,5] we obtain
>
the propagation equation f(ﬂ';. For the same assump-

>
tions and notations as used before thg reduce to
scalars, and for giveq, andw

2 > z
{& + q2(x)}D<(x,x’) = P<(0)D*(x,x).  (4)

g9 — 4o plalL
g+ qo

is the reflection coefficient for the waves propagating
inside the cavity. g is the wave numbeg(x) outside,

g is the average wave number inside the cavity, and

(10)

r(w) =

(11)

Hence, the propagation of the correlations is governed by

the same effective wave operator that enters Maxwell's” N
equation, however, on the right hand side (RHS) ofd x) for x — L/2 from the inside.

ds given by the wave numbey(x) and its first derivative

For homogeneous

Eq. (4) an inhomogeneity occurs which has to be regardegcitationg = g = g. For inhomogeneous excitation the

as the source of correlation.
in Eg. (4) are given in terms of the generatigh™) and

recombination rate§P<). In order to obtain the correct

retarded photon GF of the vacuum for eithler— 0 or
e(w) — 1, the effective wave numbeg introduced in
Eq. (4) has to become + id/c. Accounting for the
identity P~ (x,w) — P~(x,w) = Qw?/ic?)Im e(x, w)
we have to add+id60(*=w) (2w /c?) to the rates of the

The source contribution

difference betweeg andg(L/2) as well as the gradient

g'(L/2) account, e.g., for spatial hole burning.

Only the diagonal quantitie@g(x,x,w) = Dg(x, w)
enter into the photon kinetics, e.g., the locally defined
photon density of states (DOS) is given Ax, w) =
D7 (x,w) — D=(x,w). Using (6) we obtainD(x, ) =
S(x,w) + Dy(x, ), i.e., a medium induced and a vac-
uum induced contribution to the DOS. We will show in

medium, considering the vacuum outside as an infiniteljhe following that the complete optical output as well as

weak absorber as is usually done to assure causality.

the total radiative loss in the carrier kinetics are described

As usual, the propagation equation is solved using th®Y the vacuum induced contribution only,

retarded Green'’s functio®)™(x, x’) which is determined
from Eq. (4) with the RHS replaced by(x — x’). The

Dolx,0) = 3 E2 AP (AL WP + 14-@PP)

retarded Green'’s function satisfying the boundary condi- ar

tions can be constructed from the solutions of (2)
D™ (x,x") = 0(x — xNA; (x)A_(x")

+ 0(x" — )AL (xNA_(x), (5)

whereA+(x) is to be normalized in such a way that the

WronskianW = 1. Splitting the resulting integral in its
medium and vacuum contributions we find

D3(x,x') = S<(x,x') * 0(xw)Do(x,x"),  (6)
where the medium contribution is
> L/2 >
S<(x,x/) — [ Dret(x,XII)P<(XN)DadV(XN,X/) dx//
—-L/2
(7)

and the vacuum contribution is
A N — 2_“’ 2 . .
Do(x. ') = ~= 1A P{AL (DAL () + A-()AZ (),

)
respectively. The transmitted amplitude is given as
quiqL
(1 =)@ + q0)?

|At|2 = (9)

where

(12)

The energy balance of the semiconductor slab in steady
state can be written as

1

I:_
2F

dv{j,t)E(r,1)), (13)
where the output intensity is the x component of
the Pointing vector~ (E X B) at x = L/2 and B =
curl A, E = —dA/dt in Coulomb gauge.F is the sur-
face of the slab and the fact@F results from in-
tegrating the Pointing vector over the back and front
surfaces. The integral on the RHS of Eq. (13) is to be
taken over the slab. Using the nonequilibrium GF tech-
nique we obtain for the correlation function

(jr,DAr’, 1))
=[ dr’" dt" Pij(x,t,x", i")D;; (", " ¥, 1), (14)

where P and D are the polarization function and the
photon Green’s function, respectively. The timesre
defined on the Keldysh contour [4,5].

For our model system we obtain (assuming TE polar-
ization)

L L2 L < * 7
I=2= ] dw(hw)]_L/Z dx [iP™(x, @)][iDo(x, w()l]S)
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where the medium induced contributions connected withn, and the amplitude function i©l[(G — q0)/(G +

$< have canceled exactly. This way the emission fromgg)]le @ = ¢~[x+(@/aul] respectively. The Fabry-

the semiconductor through its surface has the formaPérot denominatofl — r?|?> = (1 — @2) + 4p2si? ¢

structure of a spontaneous emission, where, however, trehanges betweeh — o2 for ¢ = m# (resonance) and

total photon DOSD is replaced by its vacuum induced 1 + o2 for ¢ = (m + %)77 (antiresonance).

partD,. Note that, in contrast td itself, Dy is a strictly In the case of high excitation, where the semiconductor

positive quantity. medium is partially inverted, one may reach a situation
The quantum kinetic equation for the Wigner distribu-where for a resonance frequeney, = w, near the

tion f(k,r,7) of carriers, e.g., in the conduction band, gain maximum the gain nearly compensates the loss,

reads i.e., k(wg) + (wo/c)aesr(wy)L = 6 < 1. Becauser(w)
varies slowly due to the strong dephasing in the electron-
{% + (Vke)Vy — (Vrg)vk}f hole plasma, we can approximaigw) = n(wg) in the

vicinity of wy and obtain
_ f do[37(@)G™(0) — 3%(@)G” ()], (16) . 0l |

= PP lomo 4 (@ — 0?2 + 6%]

where ¢, 3%, GZ are the guasiparticle energy, self-
energy, and carrier Green’s function, respectively, alwhere w; = c¢/ns(wo)L. Because of high gain-loss
depending ork,r,z. Summing overk we obtain a rate compensation(é6 < 1) a very narrow peak of width
equation for the carrier density at dw; < wy and intensityl /45> evolves contributing~
1/6 to the output.
dn(x, 1) + div j(x, 1) So far our discussion is valid for any propagation direc-
d tion characterized by a fixed wave numlgr in ¢*(x) =
* - - (w?/cHe(x,w) — g1. Only wave vectorsy, > 0 con-
- [foo dw{P~(x,w)D"(x, w) tribute to the output, i.eq, < w/c, whereas forg, >
- - w/c we have total internal reflection inside the cavity.
— P x,0)D”(x, @)} + -+ (17) Consequently, performing the, integral in Eq. (12) re-
sults in strong broadening, since the resonance frequency
wo(q1) changes approximately from, for g, = 0 up
0 wor/ep/ep, — 1for g, = wy/c, whereg, is the back-
ground dielectric constant. Hence, although the output
occurs only in thex direction, the transverse degrees of
eedom cause a large “directional” broadening, which is
n the order of 10% of the optical frequency.
Addressing the problem of lasing one cannot expect
the infinitely extended slab to be a good model for a
* L2 - A lasing system due to its large directional broadening,
= —]O dw ]—L/Z dx[iP=(x, ®)][iDo(x, ®)].  \yhich results from the original isotropic emission inside
the cavity. However, in almost all existing semiconductor
(18) lasers this directional broadening is suppressed by the
] o o ) . structural cavity design. Unfortunately for such realistic
Thus, in radiative loss emission and absorption resultingyjties an exact analytic investigation of the laser mode
from medium induced processgs again cancel out and strycture, as done here for the slab configuration, is out of
the net less has the character of a spontaneous emissigghch. In order to avoid this problem, we approximately
into the vacuum induced density of stafes. treat the cavity by assuming that onjy within a small
Note that Egs. (15) and (19) for the emitted intensitygpening angleg, < gotan?d contribute to the lasing
and carri(;r loss together with the explicit expressionmodes in thex direction, whereas aly, with ¢, >
(12) for Do apply for any excitation strength rang- ;i tand lead to transverse losses in the carrier kinetics.
Ing from the case of a nOﬂeXClted, l.e., absorblnmestricting in Eq (12) the]L integra| and eva|uating

semiconductor up to a highly excited gain medium.in the remaining integrand all functions at = 0, one
The frequency dependence aby(x,w) is, up t0  gptains

slowly varying functions, comprised in the Fabry-

Pérot factor|l — r2|=2 contained inDy(x, w). Writing . w?tant d .

the complex reflectivityr(w) = o (w)e'®@), according Do(x, w) = 2 i Dog, o(x,w).  (19)

to Eq. (10) the phase is given essentially Bfw) =

Re[GIL = (w/c)nets(w)L  selecting the Fabry-Pérot This way the general structure of Egs. (15) and (18) is
resonances according tep(w,,) = mm with integer preserved with the only differences being that (i) the
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Here, the only optical or transverse contributidhis to
the self-energy> with one photon GF involved have
been considered explicity and a general GF relatio
3pG = PD has been used [7]. As usual the local optical
rate results from balancing the local absorptiBriD <
with the spontaneous plus stimulated emission, according
to P<D~ = P<(D + D~). Integrating over the cavity
length and using Eq. (6) yields the total optical rate

dN
dt

opt
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