
VOLUME 76, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 MARCH 1996

nia
ermany

1

Generalized Synchronization, Predictability, and Equivalence
of Unidirectionally Coupled Dynamical Systems

L. Kocarev1 and U. Parlitz2,*
1Department of Electrical Engineering, St. Cyril and Methodius University, Skopje, PO Box 574, Republic of Macedo

2Drittes Physikalisches Institut, Universität Göttingen, Bürgerstrasse 42-44, D-37073 Göttingen, Federal Republic of G
(Received 18 August 1995)

Necessary and sufficient conditions for the occurrence of generalized synchronization of unidirec-
tionally coupled dynamical systems are given in terms of asymptotic stability. The relation between
generalized synchronization, predictability, and equivalence of dynamical systems is discussed. All
theoretical results are illustrated by analytical and numerical examples. In particular, the existence of
generalized synchronization in the case of parameter mismatch between coupled systems leads to a
new interpretation of recent experimental results. Furthermore, the possible application of generalized
synchronization for attractor reconstruction in nonlinear time series analysis is discussed.
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Since 1990 chaos synchronization has been a topi
great attention (see [1–10] and references cited there
Usually two dynamical systems are calledsynchronized
if the distance between their states converges to zero
t ! `. Recently [8], a generalization of this conce
for unidirectionally coupled systems was proposed, wh
two systems are called synchronized if a (static) functio
relation exists between the states of both systems. In
this kind of synchronization was calledgeneralized syn-
chronization(GS) and a numerical method (called mutu
false nearest neighbors) was proposed for detecting
presence of the functional relation between the states
the coupled systems.

The main goal of this Letter is to develop a gene
theory for GS of unidirectionally coupled systems.
particular, we give conditions for the occurrence of G
and discuss its relation to predictability and equivalence
chaotic systems. The statements are illustrated using
lytical and numerical examples. Furthermore, we sh
that many real experiments of chaos synchronizati
in which nonsynchronization has been observed due
mismatch of the parameters are actually examples for

An important class of synchronizing systems is unid
rectionally coupled systems (master-slave configuratio
or systems with a skew product structure):

Ùx ­ fsxd

Ùy ­ gsy , ud 5 gsssy , hsxdddd ,
(1)

where x [ Rn, y [ Rm, and ustd ­ sssu1std, . . . , ukstdddd
with ujstd ­ hjsssxst, x0dddd. The first and second system
in (1) are referred to as adrive andresponse,respectively.
Here the variablesuj are introduced to include explicitly
the case that a functionu 5 hsxd of x is used for
driving the response system. We say that (1) posse
the property of GS [2,8] betweenx and y if there
exists a transformationH : Rn ! Rm, a manifoldM ­
hsx, yd : y 5 Hsxdj, and a subsetB ­ Bx 3 By , Rn 3

Rm with M , B such that all trajectories of (1) with
initial conditions in the basinB approachM as time
816 0031-9007y96y76(11)y1816(4)$10.00
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goes to infinity. IfH equals the identity transformation
this general definition of synchronization coincides wi
the usual definition given in the introduction. This cas
will be referred to asidentical synchronization(IS) in the
following.

Directional coupling was intensely studied in combin
tion with different methods for constructing synchronize
systems [1–10]. It may be viewed as a generalization
periodic or quasiperiodic driving that has been used
physics, mathematics, and engineering for a long tim
Furthermore, unidirectionally coupled systems may le
to interesting applications, for example, in communicatio
systems [5,9,10]. Rulkovet al. [8] have presented exam
ples for GS in unidirectionally coupled systems, whe
the transformationH is a known vector valued function.
Rulkov [11] also suggests a simple way for detection
GS by plotting a variable of the response system vers
the same variable of a second, identical response sys
starting from different initial conditions. In the case o
GS the resulting curve converges to the diagonal.

In this Letter we address the question: “Under wh
conditions does GS occur for the unidirectionally couple
system (1)?” The main result giving an answer to th
question is the following theorem.

Theorem: GS occurs in system (1) if and only if
for all sx0, y0d [ B the driven systemÙy ­ gsy , ud ­
gsssy , hsxdddd is asymptotically stable [i.e.,;y10, y20 [ By :
limt!` kyst, x0, y10d 2 yst, x0, y20dk ­ 0].

Proof: Let ft
x : Rn ! Rn be the flow of the sys-

tem Ùx ­ fsxd and Ft ­ sft
x , ft

yd the flow of (1) with
ft

y : Rn1m ! Rm. In order to construct the mapH ex-
plicitly we choose an arbitrary pointx0 [ Bx and deter-
mine the corresponding image pointy0 ­ Hsx0d. Since
all statesy [ By of the response system converge on
asymptotically to the manifoldM we consider trajectories
starting in the past at the pointsssf2tsx0d, y0ddd. When this
trajectory passes the pointx0 the timet has elapsed and
the point sssx0, ftsy0dddd is the closer toM the largert is.
Formally we defineH̃sx0, y0d ­ limt!` ft

ysssf2t
x sx0d, y0ddd.
© 1996 The American Physical Society
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Asymptotic stability implies limt!` kft
ysssf2t

x sx0d, y10ddd 2

ft
ysssf2t

x sx0d, y20dddk ! 0 for all y10, y20 [ By, and there-
fore H̃sx0, y0d is independent ofy0. The transformation
H defining the synchronization manifoldM is thus given
by Hsx0d ­ H̃sx0, y0d for arbitrary y0 [ By . Further-
more, asymptotic stability implies thatM is an attracting
manifold.

A basic technique for proving asymptotical stability
Lyapunov’s direct method. This approach was applied
the first time in chaos synchronization by He and Vaid
[4] (see also [6]). In those cases where it is not possible
find a Lyapunov function, one can numerically compu
the conditional Lyapunov exponents of the respon
which were introduced by Pecora and Carroll [3]. In th
case, GS occurs if and only if all conditional Lyapuno
exponents of the response are negative.

An immediate consequence of the above theorem
that the response is predictable, because GS impliey
predictability, that is the ability to predict the behavio
of y, based on the knowledge ofx and H only. If H is
invertiblex is also predictable fromy .

Another concept related to GS isequivalence. Two
vector fields Ùx ­ fsxd and Ùy ­ gsyd are equivalent if
there exists aCk diffeomorphismG, which takes orbits
of f to orbits of g, preserving the senses but n
necessarily parametrization by time. Analogously we c
a nonautonomous vector fieldÙy ­ gsssy , hsxdddd equivalent
to Ùx ­ fsxd if there exists aCk diffeomorphism G,
which takes orbits off to orbits ofg. This equivalence,
of course, holds only ifÙy ­ gsssy , hsxdddd is driven by a
solution xstd of Ùx ­ fsxd and is therefore aconditional
equivalence.

In some cases the transformationH that is given by
the GS is a diffeomorphism, and thus an equivalen
relation between the drive and the response is establis
by the synchronization. In general, however, GS a
equivalence are related but independent notions. T
fact and the above theorem will now be illustrated
analytical and numerical examples.

The first example shows that GS can occur for pairs
arbitrary systems provided the response is stable. He
Lorenz system [12] is driven by a Rössler system [1
The equations of the drive system are

Ùx1 ­ 2 1 x1sx2 2 4d ,

Ùx2 ­ 2x1 2 x3 , (2)

Ùx3 ­ x2 1 0.45x3 ,

and the response system is given by
Ùy1 ­ 2ss y1 2 y2d ,

Ùy2 ­ rustd 2 y2 2 ustdy3 , (3)

Ùy3 ­ ustdy2 2 by3 ,

where ustd is an arbitrary scalar function ofx1, x2, x3,
and s, b . 0. In order to show that (2) and (3) are G
we consider the differencee 5 y 2 y 0, where the primed
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variables are from an identical copy of the respon
system. Using the Lyapunov function

L ­ se2
1ys 1 e2

2 1 e2
3dy2 ,

one obtains

ÙL ­ 2e2
1 1 e1e2 2 e2

2 2 be2
3

­ 2se1 2 e2y2d2 2 3e2
2y4 2 be2

3 , 0 ,

i.e., the response system is asymptotical stable forar-
bitrary drive signalsu and arbitrary initial conditions.
Therefore GS always occurs although drive and respo
are completely different systems. Figure 1 shows attr
tors from (2) and (3) for the caseu ­ x1 1 x2 1 x3. Be-
cause of the GS the attractor of they system (3) shown
in Fig. 1(b) is a nonlinear image of the attractor of thex
system (2) given in Fig. 1(a). Thex2 vs y2 diagram in
Fig. 1(c) shows that both systems are not synchronized
the sense of IS.

FIG. 1. Generalized synchronization of a Rössler syst
(drive) and a Lorenz system (response). (a) Rösslerx2 vs x3.
(b) Lorenzy2 vs x3 ss ­ 10, r ­ 28, b ­ 2.666d. (c) Lorenz
x2 vs Rösslery2.
1817
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With our second example we want to show th
equivalence does not imply GS. For this purpose w
consider thesx1, x2d subsystem [3] of the Lorenz system
The defining equations for the drive are

Ùx1 ­ 2ssx1 2 x2d ,

Ùx2 ­ rx1 2 x2 2 x1x3 , (4)

Ùx3 ­ x1x2 2 bx3 ,

and the response system

Ùy1 ­ 2ss y1 2 y2d ,

Ùy2 ­ ry1 2 y2 2 y1u , (5)

Ùy3 ­ y1y2 2 by3

is driven byu ­ x3. For a reason that will become clea
later on, we have replicated the defining equation forÙy3

in (5). In [3] it is conjectured that fors ­ 16, b ­ 4,
and r ­ 45.92 the response systems y1, y2d is unstable,
since its conditional Lyapunov exponents have be
estimated in Ref. [3] to equall1 ­ 17.89 3 1023 and
l2 ­ 217.0. A more detailed analysis shows, howeve
that the largest conditional Lyapunov exponent of (5)
zero (this can be proved rigorously [14]) and that th
flows of the drive and the response are tightly connect
In other words,xstd can be computed directly usingystd
and the following transformation [15]:

y1 ­ kx1, y2 ­ kx2, y3 ­ k2x3 , (6)

wherek is a constant. In a straightforward manner on
can show that the variables of (4) are transformed to tho
of (5). The constantk depends on the initial conditions
x0 and y0 of (4) and (5), respectively. At the response
both x3std and y3std are known andk can be computed
with sufficient precision after a finite time ask ­

p
y3yx3.

Having calculatedk, one can computex1 and x2. Note
that the opposite is not possible. Sincek (and thusH)
is not known at the drive, it is not possible to compu
the trajectory of the response only through the knowled
of the trajectory of the drive. Despite the existence
the invertible continuous transformationH, no GS occurs
between the drive and the response. The reason is
the synchronization manifoldM ­ hsx, yd : Hsxd 5 yj
is not an attractor, because the response system
is not asymptotically stable. This example shows th
equivalence does not imply GS.Namely, (4) and (5) are
equivalent [because using transformation (6)x orbits are
mapped toy orbits], but they are not GS (because the
exists no attracting synchronization manifold).

On the other hand,GS does not imply equivalence
This is illustrated by the third example where we choo
for the drive system a standard three-dimensional ch
generator (Chua’s circuit) [16]:

Ùx1 ­ ax2 2 afm1x1 2 m2sjx1 1 1j 2 jx1 2 1jdg ,

Ùx2 ­ x1 2 x2 1 x3 , (7)

Ùx3 ­ 2bx2 ,
1818
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where a ­ 9, b ­ 100y7, m1 ­ 0.2857, and
m2 ­ 0.2143. The response is the following one
dimensional system:

Ùy ­ 2y3y10 2 ysssustd 1 pddd (8)

driven byustd ­ x1. We assume that the drive operate
in a chaotic regime, the so-calleddouble scroll attractor,
for which the average value ofx1 is zero. As will be
discussed elsewhere [14], system (7) and (8) can prod
on-off intermittency [17] and riddled basins [18]. Fo
p , 0 the response system (8) has two attractors loca
in the regionsy . 0 and y , 0, respectively. It is easy
to see that if the initial pointys0d . 0, thenystd . 0 for
all t. Therefore the corresponding basins of attraction
R1 andR2. For p . 0, the response possesses only o
attractor, the fixed point at the origin. As can be se
in Fig. 2 the conditional Lyapunov exponent of (8)
negative for all values of the parameterp and GS always
occurs for the drive and the response. Both syste
are not equivalent becauseH : R3 ! R cannot be a
diffeomorphism. For large negativep the transformation
H can be approximated byy ­ Hsxd ­ kx1 1 q, where
k ! 0 andq !

p
210p for p ! 2` [14].

Our fourth example illustrates the influence of param
ter mismatch on (generalized) synchronization. Theref
we consider the parameter dependence of the drive
the response explicitly

Ùx ­ fsx; md ,

Ùy ­ gsy , u; nd ,
(9)

wherem andn denote the corresponding sets of param
ters. Suppose that IS occurs forn ­ n0 ­ m, and assume
that there exists a neighborhoodU of n0, such that for all
n [ U the response system is asymptotically stable.
this case, in contrast to IS, the GS isnot destroyed by the
parameter mismatch. As an example consider

Ùx1 ­ 210sx1 2 x2d ,

Ùx2 ­ 28x1 2 x2 2 x1x3 , (10)

Ùx3 ­ x1x2 2 2.666x3

FIG. 2. Conditional Lyapunov exponent of the response s
tem (8) versus parameterp.
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Ùy1 ­ 2sy1 1 ustd ,

Ùy2 ­ ry1 2 y2 2 y1y3 , (11)

Ùy3 ­ y1y2 2 by3 ,

whereu ­ 10x2, ands . 0, r andb . 0 are parameters,
which are different from the corresponding values in th
drive. Definee 5 y 2 y 0, where the primed variables are
again from an identical copy of the response system. F
we note thate1 converges to zero, becauseÙe1 ­ 2se1
and s . 0. Therefore the remaining two-dimensiona
system can for the limitt ! ` be written as

Ùe2 ­ 2e2 2 y1e3 ,

Ùe3 ­ y1e2 2 be3 .

Using the Lyapunov functionL ­ e2
2 1 e2

3 one can
show that ÙL ­ 22se2

2 1 be2
3d , 0. This means that GS

occurs for alls . 0, r and b . 0, and the attractor of
the response is a nonlinear image of the attractor of
drive system (like in the first example, compare Fig. 1
This result shows that in many real experiments [3,7–
of chaos synchronization GS persists in a certain ran
of parameters. For example, in the circuit experime
in Ref. [3] the response is a stable linear subsyste
Therefore Fig. 3 in [3] provides a first experimenta
result of GS. We note that these results also shed n
light on the question of robustness of synchronizati
which, therefore, should be addressed again. In the c
of GS, for example, robustness means primarily th
the response system remains stable. The question h
the loss of stability in the response system affects t
synchronization is thus very important [for example, th
riddled basins and on-off intermittency of system (7) an
(8) are also caused by the instability of the respon
system [14]]. Moreover, the robustness of GS can a
be used, for example, in communication systems.
this case,H has to be invertible in order to recover th
information signal at the receiver. Using a suitable choi
of the functionH one may even be able to mimic th
characteristics of the channel to improve the quality of t
received signal [14].

Finally, we discuss the question how GS can be appl
to reconstruct attractors from time series. We conjectu
that (similar to the case of delay coordinates [19]) it is
generic property of the mapH to be a diffeomorphism
if the dimension of the response system is more th
twice the box-counting dimension of the attractor of th
drive. Actually, Fig. 1(b) can be interpreted as suc
a reconstruction of the attractor given in Fig. 1(a). O
course, this kind of embedding would be valid onl
asymptotically after some synchronization transient h
elapsed. Advantages of such a GS reconstruction co
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be the possibility of real-time hardware implementatio
and the large variety of reconstructions based on differ
(passive) response systems.

In conclusion, we have presented a general crite
for the occurrence of generalized synchronization
unidirectionally coupled systems. This criterion is bas
on asymptotic stability of the response systems, wh
can be verified using Lyapunov functions or condition
Lyapunov exponents. As an important implication fo
practical applications it is demonstrated that GS is rob
with respect to parameter changes. GS offers also n
possibilities for communication schemes using chao
synchronization. Furthermore, the application of G
for reconstructing attractors from time series has be
proposed and discussed. Another interesting ques
for future research would be whether GS also occurs
synchronization based information processing of neu
assemblies [20].
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