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Necessary and sufficient conditions for the occurrence of generalized synchronization of unidirec-
tionally coupled dynamical systems are given in terms of asymptotic stability. The relation between
generalized synchronization, predictability, and equivalence of dynamical systems is discussed. All
theoretical results are illustrated by analytical and numerical examples. In particular, the existence of
generalized synchronization in the case of parameter mismatch between coupled systems leads to a
new interpretation of recent experimental results. Furthermore, the possible application of generalized
synchronization for attractor reconstruction in nonlinear time series analysis is discussed.

PACS numbers: 05.45.+b, 43.72.+q, 47.52.+j

Since 1990 chaos synchronization has been a topic @oes to infinity. IfH equals the identity transformation,
great attention (see [1-10] and references cited thereindhis general definition of synchronization coincides with
Usually two dynamical systems are callsgnchronized the usual definition given in the introduction. This case
if the distance between their states converges to zero favill be referred to asdentical synchronizatioflS) in the
t — ». Recently [8], a generalization of this concept following.
for unidirectionally coupled systems was proposed, where Directional coupling was intensely studied in combina-
two systems are called synchronized if a (static) functionation with different methods for constructing synchronized
relation exists between the states of both systems. In [8ystems [1-10]. It may be viewed as a generalization of
this kind of synchronization was callegeneralized syn- periodic or quasiperiodic driving that has been used in
chronization(GS) and a numerical method (called mutualphysics, mathematics, and engineering for a long time.
false nearest neighbors) was proposed for detecting tHeurthermore, unidirectionally coupled systems may lead
presence of the functional relation between the states db interesting applications, for example, in communication
the coupled systems. systems [5,9,10]. Rulkoet al. [8] have presented exam-

The main goal of this Letter is to develop a generalples for GS in unidirectionally coupled systems, where
theory for GS of unidirectionally coupled systems. Inthe transformatiorH is a known vector valued function.
particular, we give conditions for the occurrence of GSRulkov [11] also suggests a simple way for detection of
and discuss its relation to predictability and equivalence oGS by plotting a variable of the response system versus
chaotic systems. The statements are illustrated using antre same variable of a second, identical response system
Iytical and numerical examples. Furthermore, we showstarting from different initial conditions. In the case of
that many real experiments of chaos synchronizationGS the resulting curve converges to the diagonal.
in which nonsynchronization has been observed due to In this Letter we address the question: “Under what
mismatch of the parameters are actually examples for G®onditions does GS occur for the unidirectionally coupled

An important class of synchronizing systems is unidi-system (1)?” The main result giving an answer to this
rectionally coupled systems (master-slave configurationgjuestion is the following theorem.

or systems with a skew product structure): Theorem: GS occurs in system (1) if and only if
x = f(x) for all (xo_, yo) € B th_e driven sys_temy = g(y,u) =
. (1) g(y,h(x)) is asymptotically stable [i.e¥yio,y0 € By :
y = g(y.u) = g(y.h(x)), lim;—z [[y(z, X0, y10) — ¥(z, X0, y20)ll = 0]. ’
where x € R", y € R™, and u(r) = (u1(2),...,ur(2)) Proof: Let ¢! : R" — R" be the flow of the sys-

with u;(r) = h;(x(¢,x)). The first and second systems tem x = f(x) and ®' = (¢;, ¢;) the flow of (1) with

in (1) are referred to asdrive andresponserespectively. ¢, : R"*™ — R™_ In order to construct the maf ex-
Here the variables; are introduced to include explicitly plicitly we choose an arbitrary pointy € B, and deter-
the case that a functiom = h(x) of x is used for mine the corresponding image point = H(x(). Since
driving the response system. We say that (1) possessef statesy € B, of the response system converge only
the property of GS [2,8] betweer and y if there asymptotically to the manifold/ we consider trajectories
exists a transformatiofl : R" — R™, a manifoldM =  starting in the past at the poif® ~'(xo),yo). When this
{(x,y) : y = H(x)}, and a subseB = B, X B, C R" X  trajectory passes the poirp the timer has elapsed and
R™ with M C B such that all trajectories of (1) with the point(xo, ¢'(yo)) is the closer toM the larger: is.
initial conditions in the basinB approachM as time Formally we define(xo,yo) = lim,—x ¢! (¢ (X0), yo)-
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Asymptotic stability implies lim_... [|¢;(¢, (x0),y10) —  variables are from an identical copy of the response
dy (b, (x0), y20)ll = 0 for all yio,y20 € By, and there- system. Using the Lyapunov function
fore H(xo, yo) is independent of,. The transformation L= (2o + e+ éd))2,

H defining the synchronization manifold is thus given .
by H(xo) = H(xg,yo) for arbitrary yo € B,. Further- one obtains

more, asymptotic stability implies thaf is an attracting I = —e? + ejes — €2 — be?
manifold. 5 s 5
A basic technique for proving asymptotical stability is = —(e1 — €2/2)” = 3e3/4 — be3 <0,

Lyapunov’s direct method. This approach was applied fof ¢ {he response system is asymptotical stableafer
the first time in chaos synchronization by He and Vaidyayjyrary drive signalsu and arbitrary initial conditions.

[4] (see also [6]). In those cases where it is not possible tqherefore GS always occurs although drive and response

find a Lyapunov function, one can numerically computeyre completely different systems. Figure 1 shows attrac-
the conditional Lyapunov exponents of the responsgqs from (2) and (3) for the case= x; + x» + x3. Be-

which were introdl_Jced by Peqora and quroll [3]. Inthiscguse of the GS the attractor of thesystem (3) shown
case, GS occurs if and only if all conditional Lyapunovn Fig. 1(b) is a nonlinear image of the attractor of the
exponents of the response are negative. system (2) given in Fig. 1(3). The vs y, diagram in

An immediate consequence of the above theorem igjg 1(c) shows that both systems are not synchronized in
that the response is predictable, because GS implies iha sense of IS.

predictability, that is the ability to predict the behavior
of y, based on the knowledge &fandH only. If H is
invertible x is also predictable frorg.

Another concept related to GS equivalence. Two
vector fieldsx = f(x) andy = g(y) are equivalentif
there exists aC* diffeomorphismG, which takes orbits
of f to orbits of g, preserving the senses but not
necessarily parametrization by time. Analogously we call
a nonautonomous vector field= g(y, h(x)) equivalent
to x = f(x) if there exists aC* diffeomorphismG,
which takes orbits of to orbits ofg. This equivalence,
of course, holds only ify = g(y,h(x)) is driven by a
solution x(¢) of x = f(x) and is therefore @onditional
equivalence.

In some cases the transformatiéh that is given by
the GS is a diffeomorphism, and thus an equivalence
relation between the drive and the response is established
by the synchronization. In general, however, GS and
equivalence are related but independent notions. This
fact and the above theorem will now be illustrated by
analytical and numerical examples.

The first example shows that GS can occur for pairs of
arbitrary systems provided the response is stable. Here a
Lorenz system [12] is driven by a Rdssler system [13].
The equations of the drive system are

x1 =2+ x1(xo — 4),

X2 = —X|] — X3, (2)
X3 = x» + 0.45x3,
and the response system is given by
yi=—0o(yi —y),
y2 = ru(t) — y2 — u(t)ys, 3)

y3 = u(t)ys — bys, . o
FIG. 1. Generalized synchronization of a Rd&ssler system

where u(r) is anarbitrary scalar function ofx;, x;, x3, (drive) and a Lorenz system (response). (a) RGsslers x;.
ando,b > 0. In order to show that (2) and (3) are GS (p) Lorenzy, vsx; (o = 10, r = 28, b = 2.666). (c) Lorenz

we consider the differenae = y — y/, where the primed x, vs Résslery,.

1817



VOLUME 76, NUMBER 11 PHYSICAL REVIEW LETTERS 11 MRcH 1996

With our second example we want to show thatwhere o =9, B =100/7, m; = 02857, and
equivalence does not imply GS. For this purpose wen, = 0.2143. The response is the following one-
consider thgxy, x;) subsystem [3] of the Lorenz system. dimensional system:

The defining equations for the drive are 5 = —y3/10 — y(u(t) + p) ®8)
x1 = —olx — x), . .
] driven by u(r) = x;. We assume that the drive operates
Xy = rXp — X2 — X1X3, (4) in a chaotic regime, the so-calleibuble scroll attractor,

for which the average value of; is zero. As will be
discussed elsewhere [14], system (7) and (8) can produce
on-off intermittency [17] and riddled basins [18]. For

yi=—o(yi —y), p < 0 the response system (8) has two attractors located

Yo = ryi — ya — yiu, (5) in the regionsy > 0 andy < 0, respectively. It is easy

] to see that if the initial poing(0) > 0, theny(r) > 0 for

Y3 = y1y2 — bys all . Therefore the corresponding basins of attraction are
is driven byu = x3. For a reason that will become clear R* andR~. Forp > 0, the response possesses only one
later on, we have replicated the defining equationyfor attractor, the fixed point at the origin. As can be seen
in (5). In [3] it is conjectured that forr = 16, b = 4, in Fig. 2 the conditional Lyapunov exponent of (8) is
and r = 45.92 the response systefy;, y») is unstable, negative for all values of the parameferand GS always
since its conditional Lyapunov exponents have beemccurs for the drive and the response. Both systems
estimated in Ref. [3] to equal; = +7.89 X 10"3 and are not equivalent becausH : R®> — R cannot be a
A, = —17.0. A more detailed analysis shows, however,diffeomorphism. For large negatiye the transformation
that the largest conditional Lyapunov exponent of (5) isH can be approximated by = H(x) = kx; + ¢, where
zero (this can be proved rigorously [14]) and that thek — 0 andg — /—10p for p — —o [14].
flows of the drive and the response are tightly connected. Our fourth example illustrates the influence of parame-
In other wordsx(r) can be computed directly usings)  ter mismatch on (generalized) synchronization. Therefore
and the following transformation [15]: we consider the parameter dependence of the drive and
(6) the response explicitly

X3 = x1x3 — bxs,
and the response system

yi = kxi, y2 = kxa, y3 = Kk’xs,
wherek is a constant. In a straightforward manner one x = f(x; ),
can show that the variables of (4) are transformed to those . . ©)

S oy y =gy, wv),

of (5). The constankt depends on the initial conditions
xo andy, of (4) and (5), respectively. At the response,whereu and» denote the corresponding sets of parame-
both x3(¢) and y;(r) are known andk can be computed ters. Suppose that IS occurs fer= vy = u, and assume
with sufficient precision after a finite time &s= ./y;/x3.  that there exists a neighborhootof vy, such that for all
Having calculatedk, one can compute; andx,. Note v € U the response system is asymptotically stable. In
that the opposite is not possible. Sinkgand thusH) this case, in contrast to IS, the GSnist destroyed by the
is not known at the drive, it is not possible to computeparameter mismatch. As an example consider
the trajectory of the response only through the knowledge
of the trajectory of the drive. Despite the existence of
the invertible continuous transformatidh, no GS occurs Xp = 28x; — x2 — X1x3, (10)
between the drive and the response. The reason is that
the synchronization manifold/ = {(x,y) : H(x) = y}
is not an attractor, because the response system (5)
is not asymptotically stable. This example shows that

x1 = —10(x; — x2),

).63 = X1X2 — 2.666X3

On the other handGS does not imply equivalence.
This is illustrated by the third example where we choose ]
for the drive system a standard three-dimensional chaos —157
generator (Chua’s circuit) [16]: ]

equivalence does not imply G®amely, (4) and (5) are O;
equivalent [because using transformation £6Jrbits are ]
mapped toy orbits], but they are not GS (because there _5':
exists no attracting synchronization manifold). X _10 ]

-20 ¥Y————1r—r——+——1—r
x1 = axy; — a[lmx; — my(lx; + 1] — |x; — 1], -10 i 0 5
p

10

Xy =X| — X + X3, (7) o

) FIG. 2. Conditional Lyapunov exponent of the response sys-
X3 = —fBxa, tem (8) versus parameter.
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and be the possibility of real-time hardware implementations
and the large variety of reconstructions based on different
(passive) response systems.
Y2 =Try1r = Y2 — Yi)s, (11) In conclusion, we have presented a general criteria
3 = y1y2 — bys for the occurrence of generalized synchronization of
) ’ unidirectionally coupled systems. This criterion is based
whereu = 10x;, ando > 0,r andb > 0 are parameters, on asymptotic stability of the response systems, which
which are different from the corresponding values in thecan be verified using Lyapunov functions or conditional
drive. Definee =y — y’, where the primed variables are | yapunov exponents. As an important implication for
again from an identical copy of the response system. Firsiractical applications it is demonstrated that GS is robust

yi = —oy + u(t),

we note thate; converges to zero, because= —cer  with respect to parameter changes. GS offers also new
and o > 0. Therefore the remaining two-dimensional possibilities for communication schemes using chaotic
system can for the limit — o be written as synchronization. Furthermore, the application of GS
ey = —ey — yie3, for reconstructing attractors from time series has been
. proposed and discussed. Another interesting question
e3 = yie2 — bes. for future research would be whether GS also occurs in
Using the Lyapunov functionL = e3 + ¢ one can synchronization based information processing of neural
show thatL = —2(e3 + be3) < 0. This means that GS assemblies [20].
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